#### **BAB II**

#### TINJAUAN PUSTAKA

#### 2.1 Penelitian Terdahulu

Penelitian Septiani *et al.*, (2021) menggunakan karbon aktif ampas kopi dan *fly ash* sebagai adsorben dalam mengadsorpsi ammonia di dalam limbah cair urea dengan mengkontakkan variasi massa adsorben 0,5 gram, 1 gram, 1,5 gram, 2 gram, dan 2,5 gram. Proses pengontakan berlangsung selama 30 menit dengan cara pengadukan pada kecepatan 300 rpm. Kandungan ammonia pada limbah urea dapat dikurangi dengan baik oleh adsorben yang berasal dari ampas kopi dan *fly ash*. Jika adsorben yang dikontakkan jumlahnya semakin banyak maka kadar ammonia yang teradsorpsi juga akan semakin besar. Karbon aktif ampas kopi dianggap paling efektif dengan efesiensi penyerapan lebih tinggi yaitu 84,64% dan massa adsorben yang digunakan lebih rendah yaitu 2 gram. Sementara itu, efisiensi penyerapan *fly ash* sekadar 75,16% dengan massa adsorben 2,5 gram. Hasil analisa tersebut didapatkan dari pengujian menggunakan Spektrofotometer UV-Vis.

Penelitian Suprianti *et al.*, (2021) menjelaskan terkait kinerja dari kombinasi adsorben karbon aktif dengan zeolit dalam memisahkan karbondioksida pada biogas menggunakan metode adsorpsi. Karbon aktif dihaluskan dengan ukuran 32 *mesh* lalu dipanaskan dengan suhu berkisar 200°C-300°C dengan waktu 2-3 jam. Selanjutnya karbon aktif dikombinasikan dengan variasi perbandingan karbon aktif dan zeolit yaitu 30:70, 40:60, 50:50, 60:40, 70:30. Selanjutnya, adsorben dimasukkan ke dalam kolom adsorpsi dengan kapasitas 2,43 liter. Adapun hasil penelitian didapatkan bahwa komposisi adsorben dengan perbandingan karbon aktif zeolit sebesar 70:30 memberikan kinerja yang terbaik dibandingkan dengan variasi perbandingan komposisi adsorben lainnya dengan hasil akhir kadar CO<sub>2</sub> adalah 0,15%, kadar CH<sub>4</sub> adalah 87,56% dan efektivitas penjerapan adalah 99,86%.

Penggunaan karbon aktif berbahan tempurung kelapa untuk menurunankan kadar total ammonia pada air limbah PT. Pura Delta Lestari dilakukan dengan manggunakan aktivator natrium hidroksida (NaCl), kalium hidroksida (KOH), dan asam klorida (HCl) dengan waktu optimum perendaman karbon aktif dengan aktivator yaitu selama 24 jam. Adapun bahan aktivator yang paling efektif dalam menurunkan kadar ammonia air limbah pada karbon aktif tempurung kelapa yaitu kalium hidroksida. Adapun penurunan kadar ammonia dengan menggunakan karbon aktif berbahan tempurung kelapa dengan variasi waktu perendaman menghasilkan efisiensi sebesar 87,6% untuk aktivator KOH, 79,3% untuk aktivator NaCl, dan 78,4% untuk aktivator HCl (Nurhidayanti *et al.*, 2020).

Penelitian Bajo & Samosir, (2019), dilakukan untuk mengetahui kemampuan adsorben dari karbon aktif arang tempurung kelapa yang diaktivasi NaOH dengan variasi 1 M, 2 M, dan 3 M untuk mengurangi kandungan karbondioksida (CO<sub>2</sub>) pada biogas. Adapun hasil penelitian menunjukkan adsorben karbon aktif dari tempurung kelapa yang teraktivasi NaOH 1 M dapat memberikan hasil persentase reduksi CO<sub>2</sub> lebih tinggi yaitu sebesar 100% jika dibandingkan dengan karbon aktif dari tempurung kelapa yang teraktivasi NaOH 2 M sebesar 98,19% dan teraktivasi NaOH 3 M sebesar 96,37%.

Inovasi alat penyerap bau pada kandang kelinci menggunakan bantuan *exhaust fan* yang dapat menyerap bau tidak sedap akibat urin kelinci. Alat ini menggunakan prinsip adsorben untuk menyerap ammonia menggunakan arang aktif CaCO<sub>3</sub> dengan intensitas waktu yaitu 15 menit untuk membuat alat beradaptasi dengan lingkungan kandang. Adapun penurunan ammonia dengan selang waktu 15 menit yaitu semula 150 ppm menjadi 25 ppm (Marleni, 2018).

Penelitian Redha *et al.*, (2018) dilakukan untuk memanfaatan sampah biomassa berupa kulit cangkang biji kopi menjadi karbon aktif sebagai penjerap emisi CO dan NOx dari gas buang kendaraan dengan menggunakan aktivator HCl 3% dan ZnCl<sub>2</sub> 10%. Pemanfaatan sampah biomassa cangkang kopi sebagai karbon akif dalam penyerapan gas buang CO dan NOx mampu mengurangi kadar gas CO berkisar 6,62%-39,02% dan mengurangi kadar gas NOx berkisar 13,08%-39,05%. Adapun karbon aktif kulit cangkang biji kopi yang teraktivasi HCl 3%

menghasilkan penyisihan kadar emisi gas buang CO dan NOx yang lebih optimal daripada yang teraktivasi ZnCl<sub>2</sub> 10%. Selain itu, karbon aktif dengan bentuk *hollow* briket menunjukkan presentase penyisihan yang lebih tinggi jika dibandingkan dengan bentuk pellet.

Penelitian Afriany, (2017) dilakukan dengan menggunakan batang pisang dan tempurung kelapa untuk menentukan komposisi optimal karbon aktif dan mengurangi tingkat konsentrasi logam Mn dan Fe. Campuran bahan batang pisang (BP) dan tempurung kelapa (TK) (BP:TK) yang digunakan menggunakan variasi 20: 40, 40:60, 60:40, 80:20, dan 100:0. Komposisi karbon aktif dari bahan batang pisang dan tempurung kelapa tersebut dapat memenuhi kualitas karbon aktif menurut SNI 06-3730-1995 dan memiliki kondisi optimum untuk reduksi logam berat Mn dan Fe yaitu pada komposisi 40:60 dan 100:0. Penurunan kadar Mn untuk komposisi 40:60 adalah 141,111 ppm dari kadar awal 1000 ppm dengan persentase penyisihan 85,889% dan untuk hasil penyisihan komposisi 100:0 adalah 154,667 ppm dengan persentase penyisihan 84,533%. Sementara itu, untuk penurunan konsentrasi Fe oleh variasi komposisi 40:60 adalah 95 ppm dari konsentrasi awal 1000 ppm dengan persentase penyisihan 90,5% dan untuk hasil penyisihan komposisi 100:0 adalah 275 ppm dengan persentase penyisihan 72,5%.

Pada penelitian Nurullita & Mifbakhuddin, (2015), karbon aktif yang dibuat dengan bahan dasar berupa tempurung kelapa dan kulit durian mampu menurunkan konsentrasi gas CO pada asap rokok di dalam ruangan. Konsentrasi gas CO terendah setelah proses adsorpsi didapatkan oleh penggunaan karbon aktif berbahan kulit durian yaitu sebesar 29 ppm. Pada umumnya, hasil reduksi konsentrasi gas CO oleh adsorben karbon aktif tempurung kelapa sebesar 68,6 ppm dengan persentase laju reduksi sebesar 62,6%, sedangkan untuk konsentrasi gas CO dengan adsorben karbon aktif kulit durian adalah 77,48 ppm dengan persentase penurunan sebesar 70,6%.

Menurut penelitian Verlina, (2014), karbon aktif tempurung kelapa yang diaktivasi dengan ZnCl<sub>2</sub> 10% mempunyai potensi yang lebih optimum sebagai media adsorben untuk adsorpsi gas CO, NO, dan NO<sub>x</sub> pada kendaraan bermotor

jika dibandingkan dengan karbon aktif tempurung kelapa tanpa diaktivasi ZnCl<sub>2</sub>, diaktivasi ZnCl<sub>2</sub> 6%, dan ZnCl<sub>2</sub> 8%. Adapun hasil uji mutu karbon aktif tempurung kelapa yang diakivasi ZnCl<sub>2</sub> 10% telah sesuai dengan Standar Nasional Indonesia (SNI) 06-3730-95 dengan kadar zat mudah menguap 5,16%, kadar air 6,62%, kadar abu 0,03%, dan kadar karbon terikat 94,81%. Konsentrasi aktivator ZnCl<sub>2</sub> 10% sangat mempengaruhi kapasitas adsorpsi karbon aktif pada emisi gas buang dimana persentase penyerapan gas NO dan NO<sub>x</sub> adalah 100% dengan hasil adsorpsi dari 3 ppm menjadi 0 ppm. Sedangkan, penyerapan karbon aktif terhadap gas CO adalah 81% dengan konsentrasi awal 1560 ppm menjadi 990 ppm. Pengukuran emisi gas dilakukan dengan alat PEM-9004 *analyzer*.

Tabel 2. 1 Ringkasan Penelitian Terdahulu

| No | Peneliti         | Tujuan           | Hasil                 | Perbedaan        |
|----|------------------|------------------|-----------------------|------------------|
|    | (Tahun)          |                  |                       |                  |
| 1. | Septiani et al., | Menganalisa      | Semakin besar         | Bahan baku       |
|    | (2021)           | perbandingan     | massa adsorben        | karbon aktif     |
|    |                  | efektivitas      | yang digunakan        | terbuat dari     |
|    |                  | adsorpsi         | maka penyisihan       | kombinasi ampas  |
|    |                  | ammonia dari     | ammonia dalam         | kopi robusta dan |
|    |                  | limbah cair urea | adsorbat tersebut     | tempurung        |
|    |                  | menggunakan      | juga akan semakin     | kelapa, variabel |
|    |                  | ampas kopi dan   | besar. Karbon aktif   | yang digunakan   |
|    |                  | fly ash sebagai  | ampas kopi            | yaitu            |
|    |                  | adsorben         | dianggap paling       | perbandingan     |
|    |                  | dengan variabel  | efektif dengan        | komposisi bahan  |
|    |                  | massa adsorben.  | efesiensi             | dan variasi      |
|    |                  |                  | penyerapan yang       | konsentrasi      |
|    |                  |                  | lebih tinggi berkisar | aktivator HCl,   |
|    |                  |                  | 84,64% dan massa      | sumber polutan   |
|    |                  |                  | adsorben yang lebih   | ammonia berasal  |

| No | Peneliti     | Tujuan             | Hasil                        | Perbedaan        |
|----|--------------|--------------------|------------------------------|------------------|
|    | (Tahun)      |                    |                              |                  |
|    |              |                    | rendah berkisar 2            | dari feses sapi. |
|    |              |                    | gram, namun                  |                  |
|    |              |                    | efisiensi                    |                  |
|    |              |                    | penyerapan fly ash           |                  |
|    |              |                    | hanya sekedar                |                  |
|    |              |                    | 75,16% dengan                |                  |
|    |              |                    | massa adsorben               |                  |
|    |              |                    | sebesar 2,5 gram.            |                  |
|    |              |                    | Hasil analisa                |                  |
|    |              |                    | tersebut didapatkan          |                  |
|    |              |                    | dari pengujian               |                  |
|    |              |                    | menggunakan                  |                  |
|    |              |                    | Spektrofotometer             |                  |
|    |              |                    | UV-Vis.                      |                  |
| 2. | Suprianti et | Mengetahui         | Didapatkan                   | Bahan baku       |
|    | al., (2021)  | efektivitas dari   | efektivias proses            | karbon aktif     |
|    |              | campuran           | adsorpsi terbesar            | terbuat dari     |
|    |              | perbandingan       | terdapat pada                | kombinasi ampas  |
|    |              | karbon aktif       | variasi campuran             | kopi robusta dan |
|    |              | dengan ukuran      | antara adsorben              | tempurung        |
|    |              | 32 <i>mesh</i> dan | karbon aktif:zeolit          | kelapa,          |
|    |              | zeolit untuk       | yaitu 70:30 dengan           | perbandingan     |
|    |              | memisahkan         | hasil akhir kadar            | komposisi karbon |
|    |              | karbondioksida     | $CO_2$ adalah 0,15%,         | aktif dari       |
|    |              | dari biogas        | kadar CH <sub>4</sub> adalah | kombinasi ampas  |
|    |              | dengan             | 87,56% dan                   | kopi robusta dan |
|    |              | menggunakan        | efektivitas                  | tempurung kelapa |
|    |              | metode             | penjerapan adalah            | dengan variasi   |

| No | Peneliti       | Tujuan         | Hasil               | Perbedaan                     |
|----|----------------|----------------|---------------------|-------------------------------|
|    | (Tahun)        |                |                     |                               |
|    |                | adsorpsi.      | 99,86%.             | 60:40 dan 40:60,              |
|    |                |                |                     | dan gas yang                  |
|    |                |                |                     | diadsorpsi adalah             |
|    |                |                |                     | gas ammonia                   |
|    |                |                |                     | (NH <sub>3</sub> ) pada feses |
|    |                |                |                     | sapi.                         |
| 3. | Nurhidayanti   | Mengetahui     | Bahan aktivator     | Bahan baku                    |
|    | et al., (2020) | penurunan dari | yang paling efektif | karbon aktif                  |
|    |                | kadar ammonia  | dalam menurunkan    | terbuat dari                  |
|    |                | total di dalam | kadar ammonia air   | kombinasi ampas               |
|    |                | air limbah PT. | limbah pada karbon  | kopi robusta dan              |
|    |                | Pura Delta     | aktif tempurung     | tempurung                     |
|    |                | Lestari dengan | kelapa yaitu kalium | kelapa, jenis                 |
|    |                | memanfaatkan   | hidroksida. Adapun  | aktivator yang                |
|    |                | tempurung      | penurunan kadar     | digunakan yaitu               |
|    |                | kelapa menjadi | ammonia dengan      | HCl dengan                    |
|    |                | karbon aktif   | menggunakan         | variasi                       |
|    |                | manggunakan    | karbon aktif        | konsentrasi HCl               |
|    |                | aktivator      | berbahan            | 0,5 M dan 1 M,                |
|    |                | natrium        | tempurung kelapa    | serta sumber                  |
|    |                | hidroksida     | dengan variasi      | polutan ammonia               |
|    |                | (NaCl), kalium | waktu perendaman    | berasal dari feses            |
|    |                | hidroksida     | menghasilkan        | sapi.                         |
|    |                | (KOH), dan     | efisiensi sebesar   |                               |
|    |                | asam klorida   | 87,6% untuk         |                               |
|    |                | (HCl).         | aktivator KOH,      |                               |
|    |                |                | 79,3% untuk         |                               |
|    |                |                | aktivator NaCl, dan |                               |

| No | Peneliti | Tujuan                  | Hasil                        | Perbedaan           |
|----|----------|-------------------------|------------------------------|---------------------|
|    | (Tahun)  |                         |                              |                     |
|    |          |                         | 78,4% untuk                  |                     |
|    |          |                         | aktivator HCl.               |                     |
| 4. | Bajo &   | Mengetahui              | Adsorben karbon              | Bahan baku          |
|    | Samosir, | kemampuan               | aktif dari                   | karbon aktif        |
|    | (2019)   | adsorben dari           | tempurung kelapa             | terbuat dari        |
|    |          | karbon aktif            | yang teraktivasi             | kombinasi ampas     |
|    |          | arang                   | NaOH 1 M dapat               | kopi robusta dan    |
|    |          | tempurung               | memberikan hasil             | tempurung           |
|    |          | kelapa yang             | persentase reduksi           | kelapa, jenis       |
|    |          | diaktivasi              | CO <sub>2</sub> lebih tinggi | aktivator yang      |
|    |          | NaOH dengan             | yaitu sebesar 100%           | digunakan yaitu     |
|    |          | variasi 1 M, 2          | jika dibandingkan            | HCl, variasi        |
|    |          | M, dan 3 M              | dengan karbon aktif          | konsentrasi         |
|    |          | untuk                   | dari tempurung               | aktivator yaitu     |
|    |          | mengurangi              | kelapa yang                  | 0,5 M dan 1 M,      |
|    |          | kandungan               | teraktivasi NaOH 2           | jenis polutan       |
|    |          | karbondioksida          | M sebesar 98,19%             | yang dijerap yaitu  |
|    |          | (CO <sub>2</sub> ) pada | dan teraktivasi              | gas ammonia         |
|    |          | biogas.                 | NaOH 3 M sebesar             | (NH <sub>3</sub> ). |
|    |          |                         | 96,37%.                      |                     |
| 5. | Marleni, | Membuat                 | Alat yang dibuat             | Jenis adsorben      |
|    | (2018)   | rancang bangun          | dalam penelitian             | yang digunakan      |
|    |          | alat yang dapat         | menggunakan                  | yaitu karbon aktif  |
|    |          | menyerap bau            | bantuan <i>exhaust fan</i>   | kombinasi dari      |
|    |          | tidak sedap             | yang dapat                   | ampas kopi          |
|    |          | (ammonia) pada          | menyerap bau tidak           | robusta dan         |
|    |          | kendang kelinci.        | sedap dari urin              | tempurung           |
|    |          |                         | kelinci dan                  | kelapa, rangkaian   |

| No | Peneliti      | Tujuan                | Hasil                         | Perbedaan                  |
|----|---------------|-----------------------|-------------------------------|----------------------------|
|    | (Tahun)       |                       |                               |                            |
|    |               |                       | menggunakan                   | alat, sumber               |
|    |               |                       | prinsip absorben              | polutan.                   |
|    |               |                       | arang aktif CaCO <sub>3</sub> |                            |
|    |               |                       | dengan penurunan              |                            |
|    |               |                       | kadar amoniak yang            |                            |
|    |               |                       | semula 150 ppm                |                            |
|    |               |                       | menjadi 25 ppm                |                            |
|    |               |                       | dengan intensitas             |                            |
|    |               |                       | waktu penjerapan              |                            |
|    |               |                       | yaitu 15 menit.               |                            |
| 6. | Redha et al., | Memanfaatkan          | Pemanfaatan                   | Bahan baku                 |
|    | (2018)        | limbah                | cangkang kopi                 | karbon aktif               |
|    |               | biomassa kulit        | sebagai karbon akif           | terbuat dari               |
|    |               | cangkang biji         | dalam penyerapan              | kombinasi ampas            |
|    |               | kopi sebagai          | emisi gas buang               | kopi robusta dan           |
|    |               | karbon aktif          | kendaraan roda                | tempurung                  |
|    |               | untuk menyerap        | empat mampu                   | kelapa, jenis              |
|    |               | emisi CO dan          | menurunkan kadar              | aktivator yang             |
|    |               | NOx pada gas          | gas buang CO                  | digunakan yaitu            |
|    |               | buang                 | dalam rentang                 | HCl, variasi               |
|    |               | kendaraan             | 6,62%-39,02% dan              | konsentrasi                |
|    |               | dengan aktivator      | menurunkan kadar              | aktivator yaitu            |
|    |               | HCl 3% dan            | emisi gas buang               | 0,5 M dan 1 M,             |
|    |               | ZnCl <sub>2</sub> 10% | NOx dalam rentang             | jenis polutan              |
|    |               | dengan bentuk         | 13,08%-39,05%                 | yang dijerap yaitu         |
|    |               | karbon aktif          | dengan variasi                | gas ammonia                |
|    |               | berupa hollow         | aktivator yang                | (NH <sub>3</sub> ), bentuk |
|    |               | briket dan pelet.     | paling efektif dalam          | karbon aktif               |

| No | Peneliti | Tujuan            | Hasil                           | Perbedaan         |
|----|----------|-------------------|---------------------------------|-------------------|
|    | (Tahun)  |                   |                                 |                   |
|    |          |                   | penyisihan emisi                | berupa serbuk.    |
|    |          |                   | gas buang CO dan                |                   |
|    |          |                   | NOx yaitu HCl 3%                |                   |
|    |          |                   | dengan bentuk                   |                   |
|    |          |                   | karbon aktif berupa             |                   |
|    |          |                   | hollow briket.                  |                   |
| 7. | Afriany, | Penelitian ini    | Karbon aktif yang               | Bahan baku        |
|    | (2017)   | bertujuan untuk   | terbuat dari                    | karbon aktif      |
|    |          | memanfaatkan      | campuran batang                 | terbuat dari      |
|    |          | dan mengetahui    | pisang (BP) dan                 | kombinasi ampas   |
|    |          | komposisi         | tempurung kelapa                | kopi robusta dan  |
|    |          | optimum           | (TK) dengan                     | tempurung         |
|    |          | campuran          | aktivator ZnCl <sub>2</sub> 0,1 | kelapa, jenis     |
|    |          | karbon aktif dari | N dan variasi                   | aktivator yaitu   |
|    |          | batang pisang     | komposisi BP:TK                 | HCl dengan        |
|    |          | dan tempurung     | diantaranya 20:40,              | variasi 0,5 M dan |
|    |          | kelapa untuk      | 40:60, 60:40, 80:20,            | 1 M,              |
|    |          | menurunkan        | dan 100:0 telah                 | perbandingan      |
|    |          | kadar logam       | sesuai dengan mutu              | komposisi karbon  |
|    |          | berat Mn dan      | karbon aktif                    | aktif dari        |
|    |          | Fe.               | menurut SNI 06-                 | kombinasi ampas   |
|    |          |                   | 3730-1995, dengan               | kopi robusta dan  |
|    |          |                   | kondisi optimal                 | tempurung kelapa  |
|    |          |                   | pengurangan kadar               | dengan variasi    |
|    |          |                   | logam berat Mn dan              | 60:40 dan 40:60,  |
|    |          |                   | Fe yaitu pada                   | zat yang          |
|    |          |                   | variasi komposisi               | diadsorpsi yaitu  |
|    |          |                   | 40:60 dan 100:0.                | gas ammonia       |

| No | Peneliti      | Tujuan           | Hasil               | Perbedaan               |
|----|---------------|------------------|---------------------|-------------------------|
|    | (Tahun)       |                  |                     |                         |
|    |               |                  | Adapun kadar        | (NH <sub>3</sub> ) pada |
|    |               |                  | pengurangan Mn      | kotoran sapi.           |
|    |               |                  | pada komposisi      |                         |
|    |               |                  | 40:60 adalah        |                         |
|    |               |                  | 141,111 ppm         |                         |
|    |               |                  | (85,889%), dan      |                         |
|    |               |                  | komposisi 100:0     |                         |
|    |               |                  | sebesar 154,667     |                         |
|    |               |                  | ppm (84,5333%).     |                         |
|    |               |                  | Sedangkan untuk     |                         |
|    |               |                  | Fe pada komposisi   |                         |
|    |               |                  | 40:60 sebesar 95    |                         |
|    |               |                  | ppm (90,5%) dan     |                         |
|    |               |                  | komposisi 100:0     |                         |
|    |               |                  | sebesar 275 ppm     |                         |
|    |               |                  | (72,5%).            |                         |
| 8. | Nurullita &   | Menguji          | Setelah proses      | Bahan baku              |
|    | Mifbakhuddin, | kemampuan        | adsorbsi            | karbon aktif yang       |
|    | (2015)        | karbon aktif     | menggunakan         | digunakan yaitu         |
|    |               | tempurung        | karbon aktif,       | kombinasi ampas         |
|    |               | kelapa dan kulit | kandungan CO        | kopi robusta dan        |
|    |               | durian sebagai   | paling rendah       | tempurung kelapa        |
|    |               | bahan adsorben   | adalah 29 ppm       | dan gas yang            |
|    |               | gas karbon       | dengan karbon aktif | diadsorpsi yaitu        |
|    |               | monoksida pada   | berbahan kuit       | gas ammonia             |
|    |               | asap rokok di    | durian, sedangkan   | (NH <sub>3</sub> ) pada |
|    |               | dalam ruangan.   | hasil keseluruhan   | kotoran sapi.           |
|    |               |                  | penurunan gas CO    |                         |

| No | Peneliti | Tujuan                      | Hasil                  | Perbedaan         |
|----|----------|-----------------------------|------------------------|-------------------|
|    | (Tahun)  |                             |                        |                   |
|    |          |                             | dengan adsorben        |                   |
|    |          |                             | tempurung kelapa       |                   |
|    |          |                             | adalah 68,6 ppm        |                   |
|    |          |                             | dengan persentase      |                   |
|    |          |                             | penurunan sebesar      |                   |
|    |          |                             | 62,6%, sedangkan       |                   |
|    |          |                             | untuk adsorben         |                   |
|    |          |                             | karbon aktif kulit     |                   |
|    |          |                             | durian adalah 77,48    |                   |
|    |          |                             | ppm dengan             |                   |
|    |          |                             | persentase             |                   |
|    |          |                             | penurunan sebesar      |                   |
|    |          |                             | 70,6%.                 |                   |
| 9. | Verlina, | Pemanfaatan                 | Arang aktif kelapa     | Bahan baku        |
|    | (2014)   | limbah                      | yang terkativasi       | karbon aktif yang |
|    |          | tempurung                   | $ZnCl_2$ 10%           | digunakan yaitu   |
|    |          | kelapa sebagai              | memiliki kualitas      | dari kombinasi    |
|    |          | arang aktif                 | yang telah             | ampas kopi        |
|    |          | untuk                       | memenuhi Standar       | robusta dan       |
|    |          | mengadsorpsi                | Nasional Indonesia     | tempurung         |
|    |          | emisi gas CO,               | (SNI) dan memiliki     | kelapa, jenis     |
|    |          | NO, dan NO <sub>x</sub>     | kemampuan              | aktivator yang    |
|    |          | pada kendaraan              | adsorpsi yang lebih    | digunakan yaitu   |
|    |          | bermotor                    | optimum mencapai       | HCl dengan        |
|    |          | dengan                      | 100% untuk emisi       | variasi 0,5 M dan |
|    |          | menggunakan                 | NO dan NO <sub>x</sub> | 1 M dan gas yang  |
|    |          | aktivator ZnCl <sub>2</sub> | dengan hasil           | diadsorpsi yaitu  |
|    |          | dengan variasi              | adsorpsi dari 3 ppm    | gas ammonia       |

| No | Peneliti | Tujuan                    | Hasil             | Perbedaan               |
|----|----------|---------------------------|-------------------|-------------------------|
|    | (Tahun)  |                           |                   |                         |
|    |          | karbon aktif              | menjadi 0 ppm,    | (NH <sub>3</sub> ) pada |
|    |          | belum                     | sedangkan hasil   | kotoran sapi serta      |
|    |          | teraktivasi,              | adsorpsi terhadap | pengukuran kadar        |
|    |          | teraktivasi               | gas CO adalah 81% | penurunan               |
|    |          | ZnCl <sub>2</sub> 6%, 8%, | dengan kadar      | polutan dilakukan       |
|    |          | dan 10%.                  | adsorpsi awal gas | dengan metode           |
|    |          |                           | CO adalah 1560    | indofenol               |
|    |          |                           | ppm berkurang     | menggunakan             |
|    |          |                           | menjadi 990 ppm.  | spektrofotometer.       |
|    |          |                           | Pengukuran ini    |                         |
|    |          |                           | dilakukan dengan  |                         |
|    |          |                           | alat PEM-9004     |                         |
|    |          |                           | analyzer.         |                         |

## 2.2 Teori – teori yang relevan

## 2.2.1 Pencemaran Udara

Pencemaran udara adalah suatu pencemaran yang disebabkan oleh adanya benda atau zat asing di udara sehingga mengubah kompoisi udara dari keadaan normalnya. Keberadaan sejumlah benda atau zat asing di udara dalam jangka waktu yang lama dapat mempengaruhi kehidupan manusia (Prabowo & Muslim, 2018).

Pada Peraturan Pemerintah Republik Indonesia No. 41 Tahun 1999 tentang Pengendalian Pencemaran Udara dinyatakan bahwa pencemaran udara ialah masuk atau dimasukkannya zat, energi, dan/atau komponen lain ke udara ambient yang berasal dari kegiatan manusia yang menyebabkan kualitas udara ambient turun sampai ke tingkat tertentu sehingga udara ambient tidak berfungsi sebagaimana mestinya.

Salah satu aktivitas manusia yang menyebabkan pencemaran udara yaitu aktivitas peternakan sapi yang menghasilkan berbagai limbah. Limbah yang

dihasilkan peternakan sapi dapat berupa limbah padat maupun cair. Salah satu limbah padat yang dihasilkan dari aktivitas peternakan sapi adalah kotoran atau feses sapi. Feses sapi yang dihasilkan dalam jumlah banyak dan dibiarkan begitu saja dapat menghasilkan bau yang tidak sedap serta mengakibatkan kualitas udara di sekitar peternakan semakin menurun. Bau yang tidak sedap tersebut berasal dari gas polutan terutama gas ammonia (NH<sub>3</sub>) yang bersumber dari feses sapi.

# 2.2.2 Peternakan Sapi

Peternakan adalah suatu usaha dimana hewan ternak dipelihara dengan berbagai sarana dan prasarana penunjang kehidupan ternak dan dilakukan pengembangan dalam suatu kelompok ternak di suatu wilayah. Peternakan juga dapat diartikan sebagai salah satu sektor penting dalam pemenuhan kebutuhan pangan masyarakat, salah satunya yaitu peternakan sapi. Peternakan sapi sendiri membantu dalam memenuhi kebutuhan akan protein seperti daging.

Menurut data Badan Pusat Statistik (2021), populasi ternak sapi potong di Kabupaten Cilacap pada tahun 2021 mencapai 17. 893 ekor, tahun 2020 mencapai 13.364 ekor, dan tahun 2019 mencapi 13.364 ekor. Pada penelitian Latief *et al.*, (2014), peternakan sapi hingga saat ini sering dituding sebagai usaha yang ikut mencemari lingkungan dikarenakan limbah yang dihasilkan tidak dikelola dengan baik. Dalam hal tersebut, Departemen Pertanian mengeluarkan peraturan menteri yaitu SK Mentan No. 237/1991 dan SK Mentan No. 752/1994 yang berisi pernyataan mengenai kewajiban adanyan usaha pengendalian dan pemantaun lingkungan bagi usaha peternakan dengan populasi tertentu.



Gambar 2. 1 Peternakan Sapi (Sumber: Peneliti)

Feses sapi merupakan limbah dari upaya peternakan sapi yang bersifat padat dan dalam proses pembuangannya biasanya tercampur dengan urin dan gas, seperti gas metana dan gas ammonia. Kandungan unsur hara dalam feses sapi sangat bervariasi bergantung pada berbagai faktor, seperti tingkat produksi, jumlah konsumsi pakan, dan individu dari ternak tersebut (Anugrah & Alamsyah, 2021). Berikut ini komposisi unsur dari 1 kg feses sapi pada umumnya yang dapat dilihat pada Tabel 2.2.

Tabel 2. 2 Komposisi Unsur dari Feses Sapi

| Jenis Gas                                | Feses Sapi (%) |
|------------------------------------------|----------------|
| Methana (CH <sub>4</sub> )               | 65,7           |
| Karbon Dioksida (CO <sub>2</sub> )       | 27,0           |
| Nitrogen (N <sub>2</sub> )               | 2,3            |
| Karbon Monoksida (CO)                    | 0              |
| Oksigen (O <sub>2</sub> )                | 0,1            |
| Propena (C <sub>3</sub> H <sub>8</sub> ) | 0,7            |
| Hydrogen Sulfida (H <sub>2</sub> S)      | -              |
| Nilai Kalori (kkal/m²)                   | 6513           |

(Sumber: Franthena, 2014)

Satu ekor sapi dapat menghasilkan feses mencapai ± 10-25 kg/hari. Feses sapi yang terus menerus dihasilkan dan menumpuk akan meningkatkan kandungan gas ammonia di sekitar lingkungan peternakan serta menimbulkan bau yang berdampak buruk bagi kesehatan para pekerja maupun hewan ternak. Adapun feses sapi sebanyak 400 kg dan 500 kg pada kandang sapi menghasilkan gas ammonia sebesar ± 19,072 mg/m³ dan ± 33,934 mg/m³ (Latief *et al.*, 2014). Kadar gas ammonia tersebut telah melebihi batas baku mutu yang ditentukan menurut Keputusan Menteri Negara Lingkungan Hidup No. 50 Tahun 1996 tentang baku tingkat kebauan menyatakan bahwa nilai ambang batas (NAB) dari kadar ammonia di udara yaitu sebesar 2,00 ppm atau 1,39 mg/m³. Menurut (Wibowo, 2017), konsentrasi gas ammonia yang melebihi ambang batas dapat mengakibatkan iritasi mata, tenggorokan bahkan dapat mengakibatkan kematian pada hewan ternak. Hal tersebut dapat membuat para peternak mengalami kerugian.



Gambar 2. 2 Kotoran Sapi (Sumber: Peneliti)

#### **2.2.3** Ammonia (NH<sub>3</sub>)

Ammonia merupakan unsur kimia yang memiliki sifat basa dan berbentuk gas, sangat iritan, tidak memiliki warna, serta mempunyai bau yang tajam. Selain itu, ammonia juga memiliki sifat polar, sangat mudah larut dalam air dan pelarut lainnya, serta dapat membentuk larutan ammonium hidroksida yang berdampak buruk terhadap tubuh diantaranya mengakibatkan iritasi dan rasa terbakar (Wibowo, 2017). Selain itu, gas ammonia juga memiliki beberapa sifat fisika.

Berikut merupakan sifat fisika dari gas ammonia (NH<sub>3</sub>) yang ditunjukkan oleh Tabel 2.3.

**Tabel 2. 3** Sifat Fisika Gas Ammonia (NH<sub>3</sub>)

| Sifat             | Keterangan                      |
|-------------------|---------------------------------|
| Rumus Molekul     | NH <sub>3</sub>                 |
| Berat Molekul     | 17,03 Kg/Kmol                   |
| Keadaan Fisik     | Gas pada suhu kamar             |
| Densitas          | 0,934 gr/liter (pada suhu 25°C) |
| Spesifik Gravity  | 0,817                           |
| Warna             | Tidak Berwarna                  |
| Titik Didih       | -33,4°C                         |
| Panas Pembentukan | -10,96 kal/mol                  |

(Sumber: Rizkha & Amalia, 2018)

Konsentrasi gas ammonia di udara apabila melebihi nilai yang telah ditetapkan maka dapat mengakibatkan gangguan kesehatan pada makhluk hidup. Tubuh manusia dapat dengan mudah terpapar gas ammonia dengan cara terhirup dan tertelan sedangkan paparan gas ammonia yang jarang ditemui yaitu melalui kulit. Adapun persentase paparan gas ammonia pada tubuh manusia dengan cara terhirup sebesar 78,3 %, sedangkan dengan cara tertelan sebesar 21,7%. Selain itu, efek dari paparan ammonia pada kesehatan yaitu dapat mengakibatkan iritasi ringan pada mata, hidung, dan tenggorokan hingga dapat mengakibatkan kematian secara mendadak apabila terpapar dalam waktu yang lama dengan konsentrasi yang sangat tinggi. Gas ammonia sendiri dapat menyebar hingga 1300 meter dari sumber ammonia. Adapun sumber pencemaran gas ammonia dapat berasal dari industri pengolahan pupuk, purifikasi minyak bumi, penguraian sampah, dan peternakan (Dewi, 2020).

Gas ammonia yang berasal dari peternakan dihasilkan dari proses dekomposisi feses sapi oleh mikroorganisme. Feses sapi mengandung berbagai senyawa, seperti protein, karbohidrat, lemak, dan senyawa lainnya. Ketika feses sapi mengalami penumpukan dalam jangka waktu yang panjang dengan kondisi kandang yang lembab, protein yang terkandung dalam feses sapi akan menghasilkan nitrogen yang cukup besar. Nitrogen yang terkandung pada feses sapi berfungsi sebagai sumber protein oleh mikroorganisme yang digunakan untuk berkembang biak. Oleh karena itu, saat mikroorganisme mati maka kandungan nitrogen yang terkandung pada mikroorganisme tersebut cukup tinggi. Selanjutnya, nitrogen tersebut akan diuraikan dan dilepaskan mikroorganisme lainnya dalam bentuk gas ammonia. Selain itu, kandungan gas ammonia yang tinggi disamping berdampak buruk bagi kesehatan manusia dan hewan ternak, juga dapat menunjukan kurang sempurnanya proses pencernaan pada hewan ternak dan pakan yang diberikan kepada hewan ternak terlalu berlebihan (Latief et al., 2014).

## 2.2.4 Ampas Kopi

Saat ini, aktivitas konsumsi minuman kopi dikalangan masyarakat Indonesia semakin meningkat. Menurut data AEKI (Asosiasi Ekspor Kopi Indonesia), tingkat konsumsi minuman kopi di Indonesia terus mengalami peningkatan yaitu 800 gram per kapita (total kebutuhan kopi 190 ribu ton) pada tahun 2010 menjadi 1,03 kilogram per kapita (total kebutuhan kopi 260 ribu ton) pada tahun 2014. Peningkatan konsumsi minuman kopi di kalangan masyarakat sendiri berbanding lurus dengan peningkatan limbah berupa ampas kopi yang hingga saat ini belum banyak dimanfaatkan dan hanya dibuang begitu saja (Oko *et al.*, 2021).

Ampas yang tidak dimanfaatkan hanya akan menjadi limbah yang berbahaya bagi lingkungan. Hal ini dikarenakan dalam proses penguraian limbah ampas kopi akan dihasilkan gas metana yang nantinya akan dilepaskan ke udara. Pada ampas kopi terkandung karbon sebesar 47,8% - 58,9% dan lignoselulosa yang memiliki gugus aktif hidroksi dan karbonil yang mampu menyerap logam berbahaya serta zat warna (Septiani *et al.*, 2021).



Gambar 2. 3 Limbah Ampas Kopi (Sumber: Peneliti)

Penelitian Moelyaningrum, (2019), menyatakan bahwa ampas kopi adalah salah satu bahan organik yang dapat dibuat menjadi bahan penyerap atau adsorben berupa arang aktif. Arang aktif terbuat dari bahan baku yang berasal dari bahan organik dikarenakan bahan tersebut mengandung senyawa karbon. Selain itu, ampas kopi juga memiliki kandungan beberapa zat kimia lainnya. Berikut merupakan kandungan kimia yang dimiliki oleh ampas kopi yang dapat dilihat pada Tabel 2.4.

Tabel 2. 4 Komposisi Kandungan Ampas Kopi

| Kandungan      | Jumlah (%)    |
|----------------|---------------|
| Total Karbon   | 47,8% - 58,9% |
| Selulosa       | 8,6%          |
| Total Nitrogen | 1,9% - 2,3%   |
| Protein        | 6,7% - 13,6%  |
| Abu            | 0,43% - 1,6%  |
|                |               |

(Sumber: Moelyaningrum, 2019)

# 2.2.5 Tempurung Kelapa

Saat ini, limbah tempurung kelapa banyak dijumpai seiring dengan meningkatnya pemanfaatan buah kelapa, seperti untuk minuman, bahan campuran makanan, dan lain-lain. Tanaman kelapa sering disebut sebagai tanaman serbaguna dikarenakan tanaman kelapa dapat dimanfaatkan mulai dari akar hingga daunnya. Bagian utama dari tanaman kelapa sendiri adalah buah kelapa yang berperan sebagai bahan baku industri. Terdapat beberapa komponen dari buah kelapa yaitu sabut kelapa, tempurung kelapa, daging buah, dan air kelapa (Verlina, 2014).



Gambar 2. 4 Tempurung Kelapa (Sumber: Peneliti)

Tempurung kelapa dapat diartikan sebagai suatu struktur lapisan keras yang terdapat pada buah kelapa dan mengandung lignin sehingga membuat tempurung kelapa tahan terhadap benturan. Ketebalan tempurung kelapa dapat berkisar 3 mm sampai dengan 5 mm yang dilapisi atau diselimuti oleh serabut kelapa (Susmanto *et al.*, 2020). Dalam Rahayu, (2020), unsur utama dalam tempurung kelapa berdasarkan hasil *Energy-Dispersive X-Ray Spectroscopy (EDX)* adalah karbon sebesar 82,92%. Berikut ini beberapa kandungan kimia yang terdapat pada tempurung kelapa yang ditunjukkan oleh Tabel 2.5.

**Tabel 2. 5** Komposisi Kimia Tempurung Kelapa

| Komponen     | Persentase |  |
|--------------|------------|--|
|              | (%)        |  |
| Selulosa     | 34         |  |
| Lignin       | 27         |  |
| Hemiselulosa | 21         |  |
| Abu          | 18         |  |

(Sumber: Susmanto et al., 2020)

Berdasarkan tabel tersebut, komponen tertinggi yang terkandung di dalam tempurung kelapa adalah selulosa. Selulosa sendiri adalah polimer sederhana yang mempunyai permukaan rantai seragam dan membentuk lapisan berpori. Material padatan berpori tersebutlah yang mampu menyerap bahan-bahan di sekelilingnya sehingga dapat digunakan sebagai material penyerap bahan berbahaya pada lingkungan dalam bentuk karbon aktif (Wardani *et al.*, 2018).

# 2.2.6 Karbon Aktif

Karbon aktif yaitu suatu bahan atau material yang di dalamnya terkandung karbon bebas dan mempunyai daya serap terhadap zat baik gas maupun cair yang cukup besar. Hal tersebut dikarenakan karbon aktif mempunyai pori-pori dalam jumlah banyak dengan ukuran yang sangat kecil. Semakin kecil pori-pori dari karbon aktif maka luas permukaannya juga akan semakin besar. Daya serap yang tinggi pada karbon aktif dapat membuat karbon aktif mampu menjerap gas maupun residu di dalam suatu larutan dengan cukup mudah. Adapun karbon aktif sendiri mempunyai daya serap yaitu berkisar 25-1000% terhadap berat karbon aktif (Susmanto *et al.*, 2020).

Karbon aktif dapat dibedakan menjadi 3 jenis berdasarkan bentuknya, yaitu karbon aktif granular dengan ukuran partikel berkisar 0.2 mm - 5 mm, karbon aktif pellet dengan ukuran partikel 0.8 mm - 5 mm, dan karbon aktif serbuk dengan ukuran partikel < 0.18 mm (Ramadhani *et al.*, 2020). Selain itu, karbon aktif memiliki beberapa jenis pori-pori, diantaranya mikropori (diameter pori <

 $5\mu m$ , mesopori (diameter pori  $5-25~\mu m$ ), dan makropori (diameter pori  $>25~\mu m$ ) (Alimah, 2021).

Pada umumnya, karbon aktif dibentuk melalui tiga proses, yaitu:

# 1. Pengeringan

Merupakan suatu proses penghilangan kadar air pada bahan baku pembuatan karbon aktif. Terdapat 2 cara dalam proses pengeringan yaitu pengeringan dengan sinar matahari atau pengeringan dengan oven (Adinata, 2013).

#### 2. Karbonisasi

Merupakan proses pembakaran bahan baku dimana pada proses ini akan terjadi penguraian zat organik dari bahan baku dan zat *impurities*. Pada tahap ini, terjadi proses penghilangan sebagian unsur non karbon atau unsur mudah menguap (*volatile*). Pelepasan unsur tersebut mengakibatkan struktur pori-pori akan mulai terbuka (Adinata, 2013). Karbonisasi dapat dilakukan melalui pirolisis. Pirolisis adalah proses dekomposisi termokimia biomassa menjadi produk yang berlangsung tanpa adanya udara atau oksigen bebas yang dapat mempengaruhi kualitas produk. Pirolisis dapat dilakukan pada suhu rendah (< 400 °C), menengah (400 – 600 °C), dan tinggi (>600 °C) (Nurmanita & Rachadian, 2019). Selain itu, proses karbonisasi dipengaruhi oleh beberapa faktor, diantaranya:

#### a. Lama Karbonisasi

Semakin lama proses karbonisasi berlangsung, maka reaksi pirolisis juga akan berjalan lebih optimal. Reaksi pirolisis yang semakin optimum akan menghasilkan arang dalam jumlah yang sedikit, namun akan membentuk cairan dan gas yang semakin banyak. Adapun waktu atau lama dari proses karbonisasi bergantung dari jenis dan banyaknya bahan yang akan dikarbonisasi (Turmuzi & Syaputra, 2015).

### b. Temperatur Karbonisasi

Temperatur karbonisasi akan mempengaruhi jumlah arang yang dihasilkan. Jumlah arang akan semakin sedikit jika temperatur dari proses karbonisasi semakin tinggi dan gas yang diperoleh akan semakin banyak. Hal tersebut dapat terjadi karena zat yang terurai dan menguap pada proses ini jumlahnya semakin banyak. (Turmuzi & Syaputra, 2015).

Menurut Kasim *et al.*, (2015) pada proses karbonisasi dengan pirolisis akan terjadi proses penguraian senyawa selulosa, hemiselulosa, dan lignin yang terkandung pada bahan baku. Senyawa selulosa sendiri akan mulai terurai pada suhu 280 °C dan selesai pada suhu 300 °C – 350 °C, sedangkan senyawa hemiselulosa akan terdekomposisi pada suhu 200 °C – 250 °C. Adapun untuk senyawa lignin akan terdekomposisi pada suhu 300 °C-350 °C dan berakhir pada suhu 400 °C – 450 °C.

#### c. Kadar Air

Bahan baku yang memiliki kandungan air tinggi akan menyebabkan proses pembakaran berjalan dengan kurang optimal dan bara yang dibentuk selama proses tersebut akan mudah mati. Hal tersebut berakibat pada waktu proses karbonisasi akan semakin panjang atau lama (Adinata, 2013).

#### d. Ukuran Bahan

Besar kecilnya ukuran bahan baku akan mempengaruhi pemerataan panas selama proses karbonisasi. Semakin kecil ukuran atau bentuk bahan maka panas akan menyebar ke seluruh bahan atau umpan dengan semakin cepat sehingga proses pirolisis dapat berjalan lebih sempurna (Adinata, 2013).

#### 3. Aktivasi

Suatu perlakuan pada arang dengan tujuan untuk membuat pori lebih besar dengan cara memecah ikatan hirdrokarbon atau mengoksidasi molekul permukaan disebut dengan proses aktivasi. Aktivasi sendiri akan merubah sifat baik fisika maupun kimia pada arang (Verlina, 2014).

Produk dari proses karbonisasi tidak dapat diaplikasikan sebagai adsorben jika produk tersebut tidak melakukan proses aktivasi. Pada proses aktivasi dihasilkan karbon oksida yang menyebar pada permukaan karbon dikarenakan adanya proses reaksi antara zat pengoksida dengan karbon (Suprianofa, 2016).

Aktivasi merupakan suatu proses yang bertujuan untuk memperluas area permukaan pada karbon yang dihasilkan dari proses karbonisasi dengan cara melepaskan hidrokarbon dan tar yang terlekat pada karbon sehingga akan menghasilkan daya serap yang tinggi. Terdapat dua metode aktivasi yaitu aktivasi secara fisika dan aktivasi secara kimia (Rohmah & Redjeki, 2014).

#### a. Aktivasi Fisika

Aktivasi secara fisika adalah suatu proses yang bertujuan untuk memutuskan rantai karbon dari suatu senyawa organik menggunakan proses pemanasan pada suhu tinggi. Aktivasi fisika dapat dilakukan dengan dua langkah yaitu aktivasi menggunakan reaksi karbonisasi dari zat organik menjadi arang dengan memanaskannya tanpa menggunakan oksigen atau uap di suhu berkisar 800 °C-1000 °C dan dengan penggunaan oksidator lemah, seperti uap, CO<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, dan gas pengoksidan lainnya (Erawati & Ardiansyah, 2018).

Aktivasi fisika adalah suatu proses dimana rantai karbon senyawa organik diputus dengan menggunakan panas, uap, dan CO<sub>2</sub>. Gas karbon dioksida, uap air, oksigen, dan nitrogen yang umumnya digunakan dalam metode aktivasi fisika memiliki fungsi untuk memperluas permukaan arang, menghilangkan unsur yang mudah menguap, dan menghilangkan tar atau hidrokarbon pengotor yang terkandung dalam arang melalui pengembangan struktur rongga yang ada pada arang (Suprianofa, 2016).

# b. Aktivasi Kimia

Aktivasi kimia adalah proses yang bertujuan untuk memutuskan rantai karbon senyawa organik menggunakan bahan kimia. Dalam proses aktivasi ini biasanya digunakan bahan-bahan pengaktif, seperti garam kalsium klorida (CaCl<sub>2</sub>), seng klorida (ZnCl<sub>2</sub>), natrium klorida (NaCl), dan lain-lain. Selain itu, bahan pengaktif yang sering digunakan lainnya yaitu berbagai asam dan basa organik, seperti asam sulfat (H<sub>2</sub>SO<sub>4</sub>), asam klorida (HCl), asam hiploklorit (H<sub>3</sub>PO<sub>4</sub>), kalium hidroksida (KOH), dan natrium hidroksida (NaOH) (Suprianofa, 2016).

Menurut Adinata, (2013), terdapat beberapa faktor yang dapat mempengaruhi proses aktivasi, diantaranya:

# a. Lama Perendaman

Proses perendaman menggunakan aktivator atau bahan aktivasi bertujuan dalam penghilangan atau pembatasan terbentuknya lignin dikarenakan senyawa

tar yang mampu menutupi pori-pori terbentuk karena adanya lignin sehingga daya serap dari karbon aktif akan berkurang.

#### b. Konsentrasi Larutan Kimia

Konsentrasi larutan kimia aktivasi yang tinggi maka akan meningkatkan daya ikatnya terhadap senyawa-senyawa tar sisa karbonisasi sehingga senyawa tersebut akan keluar melewati mikro pori-pori dari karbon dan menyebabkan permukaan karbon akan semakin porous. Hal tersebut berakibat pada besarnya daya adsorbsi karbon aktif.

Akan tetapi, konsentrasi larutan aktivasi yang terlalu tinggi juga dapat membuat proses transfer massa larutan kimia aktivasi yang mengikat sisa tar untuk keluar dari mikro pori-pori karbon terlalu cepat dan menyebabkan sisa tar tersebut terkumpul pada permukaan mikro pori-pori karbon yang berakibat pada penurunan daya adsorbsi karbon aktif.

#### c. Ukuran Bahan Baku

Karbon aktif dengan kualitas baik akan dihasilkan jika ukuran bahan baku saat proses aktivasi semakin kecil. Hal tersebut dikarenakan luas kontak antara bahan baku dan larutan aktivasi akan semakin besar.

## d. Temperatur dan Waktu Aktivasi

Setiap bahan baku mempunyai temperatur dan waktu aktivasi yang berbeda - beda. Semakin tinggi temperatur aktivasi dan semakin lama aktivasi yang dilakukan, maka terjadi peningkatan kecepatan reaksi antara karbon dengan uap air sehingga CO<sub>2</sub> dan H<sub>2</sub>O yang dihasilkan akan semakin banyak dan karbon yang terbentuk juga akan semakin berkurang.

### 2.2.7 Karakteristik Karbon Aktif

Kualitas karbon aktif dapat diketahui berdasarkan karakteristik yang dimilikinya. Karakteristik karbon aktif yang akan diujikan pada penelitian ini diantaranya kadar air, kadar abu, kadar zat mudah menguap, daya serap terhadap iodin, karakteristik morfologi dan kandungan unsur, serta gugus fungsi dari karbon aktif. Pengujian karakteristik karbon aktif berupa kadar air, kadar abu, kadar zat mudah menguap, dan daya serap terhadap iodin dinilai berdasarkan

persyaratan Standar Nasional Indonesia (SNI) No. 06-3730-1995 tentang standar kualitas dan pengujian arang aktif. Berikut adalah karakteristik karbon aktif secara menyeluruh yang ditunjukkan oleh Tabel 2.6.

**Tabel 2. 6** Standar Kualitas Karbon Aktif

| Uraian                                         | Persyaratan Kualitas |             |
|------------------------------------------------|----------------------|-------------|
|                                                | Butiran              | Serbuk      |
| Bagian yang hilang pada pemanasan 950 °C       | Maks. 15             | Maks. 25    |
| Kadar Air (%)                                  | Maks. 4,4            | Maks. 15    |
| Kadar Abu (%)                                  | Maks. 2,5            | Maks. 10    |
| Bagian tidak mengarang                         | Tidak nyata          | Tidak nyata |
| Daya serap terhadap I <sub>2</sub> (mg/g)      | Min. 750             | Min. 750    |
| Karbon aktif murni (%)                         | Min. 80              | Min. 65     |
| Daya serap terhadap benzene (%)                | Min. 25              | -           |
| Daya serap terhadap <i>metilen blue</i> (mg/g) | Min. 60              | Min. 120    |
| Kerapatan jenis curah (g/ml)                   | 0,45-0,55            | 0,30-0,35   |
| Lolos ukuran mesh 325 (%)                      | -                    | Min. 90     |
| Jarak mesh (%)                                 | 90                   | -           |
| Kekerasan (%)                                  | 80                   | -           |

(Sumber: SNI No. 06-3730- 1995)

### a. Kadar Air

Sifat higroskopis pada karbon aktif dapat diketahui melalui analisa kadar air. Nilai kadar air pada karbon aktif akan memberikan petunjuk terkait jumlah air yang membuat pori-pori karbon aktif tertutup dan dipengaruhi oleh temperatur karbonisasi dan kadar aktivator. Semakin meningkatnya temperatur karbonisasi dan kadar aktivator maka kadar air pada karbon aktif cenderung mengalami penurunan (Oko *et al.*, 2021).

#### b. Kadar Abu

Kadar abu adalah persentase berat dari oksida-oksida mineral yang terkandung dalam karbon, antara lain kalsium, silicon, sulfur, dan komponen lainnya dengan jumlah sedikit. Analisa ini ditujukan untuk memastikan kadar oksida logam yang terkandung dalam karbon aktif setelah dilakukan proses aktivasi. Tinggi rendahnya kadar abu dipengaruhi oleh aktivator. Aktivator yang bersifat asam dapat melarutkan oksida-oksida logam sehingga kadar abu mengalami penurunan (Verlina, 2014).

# c. Kadar Zat Mudah Menguap

Jumlah senyawa atau zat yang belum teruapkan selama proses karbonisasi dan aktivasi dapat diketahui melalui analisa kadar zat mudah menguap. Tinggi rendahnya kadar zat menguap pada karbon aktif berorientasi pada kapasitas daya jerap dari karbon aktif tersebut. Daya jerap karbon aktif akan berkurang seiring dengan tingginya kadar zat mudah menguap. Adanya peningkatan suhu aktivasi cenderung akan menurunkan kadar zat mudah menguap dikarenakan senyawa yang dijerap dalam pori karbon aktif, seperti CO<sub>2</sub>, CO, CH<sub>4</sub>, dan H<sub>2</sub> dapat dilepaskan secara sempurna pada suhu tinggi (Verlina, 2014).

## d. Daya Serap terhadap Iodin (I<sub>2</sub>)

Penentuan daya serap karbon aktif terhadap iod adalah kriteria yang menunjukan kinerja karbon aktif untuk menjerap molekul-molekul dengan berat molekul yang kecil (Oko *et al.*, 2021). Daya serap karbon aktif terhadap iod memiliki hubungan dengan luas permukaan dan suhu karbonisasi. Jika daya serap karbon aktif terhadap iod nilainya semakin besar maka luas permukaan dari karbon aktif juga akan semakin besar. Selain itu, semakin tinggi suhu karbonisasi maka daya serap iod akan semakin menurun (Rasdiansyiah *et al.*, 2014).

## e. Karakteristik Morfologi dan Kandungan Unsur

Karakteristik morfologi dan kandungan unsur dari karbon aktif dapat diketahui melalui analisis *Scanning Electron Microscopy* (SEM) dan *Energy Dispersive X-Ray* (EDX). SEM adalah salah satu jenis mikroskop elektron yang dapat menggambarkan profil dari permukaan suatu benda dengan menggunakan berkas elektron dan sangat cocok digunakan dalam pengamatan permukaan kasar dengan besar perbesaran antara 20 kali hingga 500.000 kali (Kusumaningtyas, 2019). Pada umumnya, penggunaan SEM dilakukan untuk menganalisis topologi dari suatu material yang terdiri atas tekstur, morfologi, bentuk, ukuran, dan susunan partikel penyusun dari material. Prinsip kerja dari SEM yaitu adanya

penembakan elektron ke arah sampel yang berasal dari katoda filament. Saat elektron mengalami interaksi dengan sampel maka elektron akan kehilangan sejumlah energi yang mengakibatkan elektron dan emisi elektron mengalami pemantulan. Adapun hasil dari proses pemantulan dan emisi tersebut akan dideteksi oleh detektor tertentu sehingga akan diperoleh gambaran yang berupa morfologi dari suatu kristal (Sulistiono, 2018).

Salah satu detektor yang digunakan pada SEM yang memiliki fungsi untuk mengetahui komposisi dari sampel adalah *Energy-Dispersive X-Ray Spectroscopy* (*EDX*). Prinsip kerja dari EDX sendiri yaitu memanfaatkan tembakan sinar-X pada sampel yang akan diuji dan menghasilkan suatu spektrum yang akan memberikan informasi tentang komposisi penyusun sampel. Analisis EDX tidak dapat bekerja tanpa adanya SEM karena sistem analisis ini bekerja sebagai fitur yang terintegrasi dengan SEM. Selain sinar elektron, saat sampel difoto oleh SEM juga akan diemisikan oleh sinar-X yang dibawa oleh EDX yang memiliki ciri khas pada setiap unsur dalam energi dan panjang gelombangnya. Setiap unsur yang merespon emisi tersebut akan mampu ditentukan oleh EDX yang selanjutnya data tersebut akan dimasukkan pada gambar SEM untuk memperoleh suatu peta unsur yang sesungguhnya dari permukaan suatu sampel yang diukur (Kusumaningtyas, 2019).



**Gambar 2. 5** Instrumen Scanning Electron Microscopy (SEM) (Sumber: Peneliti)

## f. Karakteristik Gugus Fungsional

Karakteristik berupa gugus fungsi dari karbon aktif dapat ditentukan dengan metode analisis spektroskopi *Fourier Transform Infrared* (FTIR). FTIR

merupakan salah satu metode analisis yang sangat baik dalam mengidentifikasi struktur molekul dari suatu senyawa yang mana senyawa-senyawa tersebut mengindikasikan karakteristik penyerapan pada daerah spektrum IR. Adapun fungsi yang terpenting dari FTIR yaitu untuk mengetahui senyawa organik dikarenakan senyawa tersebut memiliki spektrum yang kompleks terdiri atas banyak puncak dan memiliki sifat fisik yang khas dengan kemungkinan kecil dua senyawa memiliki spektrum sama (Kusumaningtyas, 2019).

Prinsip FTIR sendiri yaitu didasarkan pada setiap sampel memiliki frekuensi spesifik yang saling berhubungan karena adanya vibrasi internal dari atom gugus fungsi. Kemudian, inti atom yang memiliki ikatan kovalen akan memperoleh getaran saat molekul menerima radiasi infra merah dan akan terjadi peningkatan pada amplitudo getaran atom-atom yang terikat akibat energi yang terserap. Selanjutnya, tipe ikatan yang berbeda akan menyerap radiasi inframerah pada panjang gelombang dengan karakteristik yang berbeda pula dikarenakan panjang gelombang serapan dari suatu tipe ikatan bergantung pada jenis ikatan tersebut. Hal tersebut mengakibatkan setiap molekul akan memiliki karakteristik yang berbeda (Sulistiono, 2018).



Gambar 2. 6 Instrumen Fourier Transform Infrared (FTIR) (Sumber: Peneliti)

#### 2.2.8 Aktivator

Karbon aktif sebagai media adsorben biasanya dibentuk melalui proses aktivasi, baik dengan cara fisika maupun kimia. Pada aktivasi kimia digunakan larutan pengaktivasi (aktivator) untuk memperbesar pori-pori karbon sehingga proses penyerapan dengan karbon tersebut dapat berjalan lebih maksimal. Aktivator sendiri merupakan suatu larutan atau bahan yang dapat membuat jumlah terbentuknya zat *impurities* dan produk samping dari suatu bahan semakin berkurang. Larutan aktivator dapat berupa asam maupun basa (Arung *et al.*, 2014).

Zat aktivator mempunyai sifat mengikat air yang masih terdapat di dalam pori-pori karbon setelah proses karbonisasi. Zat aktivator tersebut akan masuk ke dalam pori-pori karbon aktif dan akan membuat permukaan karbon yang tertutup menjadi terbuka sehingga ketika proses pemanasan dilakukan, senyawa pengotor yang terdapat pada pori-pori karbon akan terserap dengan mudah dan membuat luas permukaan karbon aktif akan semakin luas serta daya serapnya juga akan semakin meningkat (Oktari, 2014).

Aktivator yang akan digunakan pada penelitian ini yaitu larutan asam kuat berupa asam klorida (HCl). Aktivator tersebut digunakan untuk mengaktivasi karbon aktif yang terbuat dari kombinasi ampas kopi robusta dan tempurung kelapa. Menurut Sholikhah *et al.*, (2021) aktivator asam dapat membuka pori-pori karbon dengan ukuran lebih besar dibandingkan dengan aktivator basa yang hanya dapat membuat pori karbon terbuka dengan ukuran yang kecil sehingga daya serap dari karbon aktif yang teraktivasi dengan aktivator asam akan menjadi lebih besar jika dibandingkan dengan aktivator basa.

Asam klorida (HCl) merupakan senyawa asam kuat yang bersifat stabil dan mudah larut. Asam klorida (HCl) sebagai aktivator juga memiliki sifat higroskopis sehingga mampu mengurangi kadar air pada karbon aktif. Aktivasi dengan HCl dapat melarutkan zat pengotor lebih banyak sehingga akan membentuk pori-pori dengan jumlah yang lebih banyak dan proses penjerapan adsorbat juga akan menjadi lebih optimum. Selain itu, karbon aktif yang terkaktivasi HCl mempunyai daya serap iod yang lebih optimal dibandingkan akivator lainnya, seperti H<sub>2</sub>SO<sub>4</sub> dan HNO<sub>3</sub>. Hal tersebut disebabkan karena H<sub>2</sub>SO<sub>4</sub> yang bersifat dekstruktif dapat merusak dinding struktur dari karbon aktif sehingga daya serap iodnya akan bernilai lebih kecil (Putri, 2021). Berikut adalah sifat fisik dari HCl yang ditunjukkan oleh Tabel 2.7.

**Tabel 2. 7** Sifat Fisik Asam Klorida (HCl)

| Sifat Fisik HCl |                           |  |
|-----------------|---------------------------|--|
| Rumus Molekul   | HCl                       |  |
| Massa Molar     | 36.46 g/mol               |  |
| Penampilan      | Cairan Tidak Berwarna     |  |
| Densitas        | 1.18 g/cm <sup>3</sup>    |  |
| Titik Didih     | 110 °C pada larutan 20.2% |  |

(Sumber: Oktari, 2014)

Selain itu, HCl juga memiliki sifat kimia, diantaranya (Oktari, 2014):

- 1. Memiliki sifat korosif
- 2. HCl merupakan asam monoprotik dan akan membentuk ion hidronium jika bereaksi dengan molekul air.
- 3. Merupakan asam kuat dan akan menghasilkan klorida terlarut saat bereaksi dengan asam senyawa seperti kalsium karbonat dan tembaga.
- 4. Sulit dalam melakukan reaksi redoks.
- 5. Ion klorida yang terkandung bersifat tidak reaktif dan tidak beracun.

# 2.2.9 Adsorpsi

Menurut Halimah, (2016), adsorpsi adalah proses akumulasi dari beberapa molekul, ion, dan atau atom yang terjadi pada batas antara dua fasa. Fasa yang menyerap disebut dengan adsorben, sedangkan fasa yang terserap disebut adsorbat. Pada umumnya, adsorben terbuat dari bahan yang mempunyai pori dikarenakan proses adsorpsi sendiri berlangsung pada dinding-dinding pori dari adsorben.

Adsorpsi merupakan suatu proses pengumpulan benda-benda terlarut dalam suatu larutan antara dua permukaan, seperti padat dan cair, padat dan gas, cair dan cair, maupun gas dan cair. Bahan yang teradsorpsi disebut dengan adsorbat atau *solute* dan bahan yang mengadsorpsi disebut dengan adsorben. Selain itu, adsorpsi

juga dapat diartikan sebagai proses menempelnya suatu partikel pada suatu permukaan karena adanya perbedaan muatan lemah diantara kedua benda tersebut. Kemudian, proses tersebut akan membentuk suatu lapisan tipis partikel yang berukuran halus pada permukaan tersebut (Verlina, 2014).

Adsorben sebagai bahan yang mengadsorpsi biasanya berbentuk granular dengan variasi ukuran diameter adsorban sebesar 12 mm hingga 50 µm. Adsorben yang memiliki mutu baik mempunyai rasio dan luas permukaan yang besar, porositas yang besar serta volume pori maksimal 50% dari volume total partikel (Aini, 2022). Selain itu, proses adsorpsi sendiri dipengaruhi oleh beberapa faktor, antara lain:

#### a. Luas Permukaan

Semakin luas permukaan dari suatu adsorben, maka semakin banyak pula zat yang akan teradsorpsi. Hal ini dikarenakan kemungkinan zat yang menempel pada permukaan adsorben akan semakin bertambah. Luas permukaan adsorben sangat dipengaruhi oleh ukuran partikel dan jumlah dari adsorben (Widayatno *et al.*, 2017).

# b. Konsentrasi Masing-Masing Zat

Adsorben dan adsorbat yang masing-masing memiliki konsentrasi tinggi akan membuat jumlah adsorbat yang terjerap akan semakin banyak pula (Widayatno *et al.*, 2017).

# c. Temperatur

Daya serap adsorben akan meningkat jika dilakukan pengaktifan dengan cara pemanasan dimana pori-pori adsorben akan jauh lebih terbuka (Adinata, 2013).

### d. Waktu Kontak

Jumlah adsorbat yang terserap pada permukaan adsorben akan semakin meningkat seiringi dengan lamanya waktu kontak yang dilakukan hingga mencapai titik setimbang (Zian *et al.*, 2016).

## e. Pengadukan

Proses adsorpsi akan berlangsung lebih cepat seiring dengan cepatnya pengadukan yang dilakukan. Hal tersebut dikarenakan proses tumbukan antara molekul-molekul adsorbat dan adsorben berlangsung semakin cepat pula (Widayatno *et al.*, 2017).

#### 2.2.10 Adsorben

Suatu zat yang berfungsi sebagai penjerap zat lain baik cairan maupun gas pada proses adsorpsi disebut dengan adsorben. Adapun jenis adsorben yang banyak digunakan yaitu silika gel, karbon aktif, dan zeolite. Selain itu, adsorben yang baik memiliki beberapa kriteria, diantaranya:

- 1. Luas permukaan adsorben, luas permukaan yang besar akan menghasilkan daya adsorpsi yang besar pula.
- 2. Selama proses adsorpsi berlangsung, adsorben tidak mengalami perubahan volume yang signifikan.
- 3. Kemurnian adsorben, semakin tinggi tingkat kemurniannya maka daya adsorpsi yang dimilikinya juga akan semakin meningkat.
- 4. Sifat atom pada permukaan adsorben, sifat atom tersebut memiliki kaitan dengan interaksi molekular antara adsorbat dengan adsorben (Nurmanita & Rachadian, 2019).

#### 2.2.11 Metode Indofenol

Metode indofenol merupakan suatu metode yang digunakan untuk mengukur kadar gas ammonia (NH<sub>3</sub>) pada udara ambien. Prinsip dari metode tersebut yaitu gas ammonia (NH<sub>3</sub>) dari udara ambien akan dijerap menggunakan larutan penjerap berupa asam sulfat (H<sub>2</sub>SO<sub>4</sub>) dan akan membentuk ammonium sulfat (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>. Larutan tersebut akan direaksikan dengan fenol dan natrium hipoklorit dalam suasana basa sehingga akan membentuk senyawa kompleks indofenol berwarna biru. Intensitas warna biru tersebut menunjukan kadar gas ammonia (NH<sub>3</sub>) yang kemudian akan diukur menggunakan spektrofotometer dengan panjang gelombang 630 nm (Pratomo, 2019).

# 2.2.12 Spektrofotometer UV-Vis

Spektrofotometer merupakan suatu alat yang berfungsi untuk mengukur nilai absorbansi dari suatu sampel dengan melewatkan cahaya menggunakan panjang gelombang tertentu pada kuvet yang kemudian sebagian dari cahaya akan diserap dan sebagian lainnya akan dilewatkan serta dipantulkan. Konsentrasi larutan yang terdapat pada kuvet akan sebanding dengan nilai absorbansi dari cahaya yang terserap. Salah satu jenis spektrofotometer yang sering digunakan yaitu spektrofotometer UV-VIS. Pengukuran serapan cahaya oleh suatu senyawa pada jenis spektofotometer ini dilakukan pada daerah ultraviolet (200-350 nm) dan sinar tampak (350-800 nm) (Fatra, 2022).



**Gambar 2. 7** Spektrofotometer UV-Vis (Sumber: Peneliti)

#### 2.2.13 Efektivitas

Efektivitas merupakan parameter untuk mengukur seberapa fungsi karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa dalam mereduksi gas polutan khususnya gas ammonia (NH<sub>3</sub>) yang bersumber dari feses sapi. Efektivitas karbon aktif ditentukan dengan cara melakukan pengukuran kadar gas ammonia (NH<sub>3</sub>) sebelum melewati adsorben karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa dan setelah melewatinya. Semakin tinggi persentase (%) efektivitas yang dihasilkan maka semakin baik pula kualitas adsorben karbon aktif yang dibuat dalam proses penjerapan polutan.

# 2.3 Hipotesis

Adapun dugaan sementara yang muncul dalam penelitian ini antara lain:

- Karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa tanpa teraktivasi HCl serta teraktivasi HCl 0,5 M, 1 M memiliki kadar air < 15%, kadar abu < 10%, kadar zat mudah menguap (*volatile matter*) < 25%, daya serap iodin > 750 mg/g berdasarkan SNI 06-3730-1995.
- Karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa tanpa teraktivasi HCl serta teraktivasi HCl 0,5 M, 1 M memiliki morfologi permukaan pori dengan jenis mesopori dengan kandungan unsur tertinggi yaitu unsur C > 80% dan memiliki gugus fungsi yaitu O-H, C-H, C-C, C=C dan C-O.
- 3. Perbandingan komposisi karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa dengan variasi 40A:60T teraktivasi HCl 1 M lebih optimum dalam menurunkan kadar gas ammonia (NH<sub>3</sub>) pada feses sapi.
- 4. Efektivitas karbon aktif dari kombinasi ampas kopi robusta dan tempurung kelapa mampu menurunkan gas ammonia (NH<sub>3</sub>) pada feses sapi > 75%.