BAB II

TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

Penelitian Dahlan dkk, (2013) menggunakan biji kelor untuk memurnikan minyak bekas pakai. Biji kelor dikarbonisasi dengan suhu 600°C selama 2 jam, kemudian diaktivasi dengan variasi aktivator HCl, NaCl, dan CaCl₂, dan waktu variasi 20, 22, dan 24 jam. Pemurnian minyak bekas pakai dilakukan melalui kolom adsorpsi dengan membandingkan antara karbon aktif yang dicampur bentonit dan pasir kuarsa dengan karbon aktif yang telah dipres pada tekanan 1 psia. Hasil dari penelitian tersebut didapatkan adsorben terbaik pada campuran karbon aktif, bentonit, dan pasir kuarsa dengan jenis aktivator terbaik yaitu HCl dan waktu perendaman 24 jam. Bilangan asam terendah yang didapatkan yaitu sebesar 0,0152% dan bilangan peroksida terendah sebesar 1,2 Meq/Kg.

Penelitian Lestari dkk, (2016) menjelaskan tentang karbon aktif yang terbuat dari tempurung kelapa dengan aktivator asam fosfat sebagai adsorben dalam pemurnian minyak bekas pakai. Tempurung kelapa dikarbonisasi menggunakan *furnace* pada suhu 400°C selama 30 menit kemudian dihaluskan dan diayak dengan ukuran partikel 30 mesh, 60 mesh, dan 80 mesh. Karbon aktif tempurung kelapa lalu diaktivasi dengan asam fosfat dengan variasi konsentrasi 2%, 4%, 6% dan 8%. Hasil paling baik yang diperoleh yaitu bilangan asam sebesar 0,56 KOH/g pada karbon aktif tempurung kelapa dengan ukuran 80 mesh dan variasi konsentrasi 8%.

Penelitian Octarya & Fernando, (2016) menggunakan ampas tebu yang dikarbonisasi pada suhu 600°C selama 2 jam lalu diaktivasi menggunakan larutan NaCl 30% selama 24 jam. Hasil dari penelitian tersebut menunjukkan hasil penurunan bilangan peroksida dari 10,12 Meq/Kg menjadi 3,93 Meq/Kg. Sementara itu kandungan asam lemak bebas menurun dari 2,4% FFA menjadi 0,49% FFA.

Menurut Puspitasari, (2017) tentang karbon aktif tempurung kelapa berbentuk granular yang diaktivasi menggunakan Ca(OH)₂ dan tekanan, tempurung kelapa dikarbonisasi dengan suhu 350°C selama 2 jam dan diayak menggunakan ayakan berukuran 20 mesh. Variasi yang digunakan yaitu variasi konsentrasi larutan

Ca(OH)₂ 1M, 2M, dan 3M serta variasi tekanan 1 atm, 1,5 atm dan 2 atm. Hasil terbaik yang didapatkan dari penelitian tersebut yaitu pada konsentrasi Ca(OH)₂ 1M dan tekanan 1,5 atm.

Penelitian Syahrir & Syahrir, (2018) menggunakan kulit singkong dalam pemurnian minyak bekas pakai. Kulit singkong dikarbonisasi selama 15 menit pada suhu 400°C kemudian diayak menggunakan ayakan berukuran 100 mesh dan diaktivasi pada larutan H₃PO₄ 5%. Variasi yang digunakan yaitu variasi massa 2, 4, dan 6 gram serta variasi suhu kontak sebesar 100°C, 110°C, dan 120°C. Dari penelitian tersebut dihasilkan bilangan asam 0,99 mg NaOH/gr dan bilangan peroksida 7,41 meq O₂/kg pada perlakuan suhu kontak 100°C dengan massa karbon aktif 6 gram.

Menurut Oko dkk, (2020) pemurnian minyak bekas pakai menggunakan metode adsorpsi dengan arang aktif dari serbuk gergaji kayu ulin sebagai adsorben. Serbuk gergaji kayu ulin yang sudah keringkan kemudian dikarbonisasi pada suhu 500°C selama 1 jam. Karbon kemudian diayak menggunakan screening -100+120 mesh. Selanjutnya diaktivasi secara kimia menggunakan asam fosfat 10% selama 24 jam dan secara fisika menggunakan *furnace* dengan suhu 550°C selama 1 jam. Variasi massa yang digunakan yaitu 1,5 gram, 2,5 gram, 3,5 gram, 4,5 gram, 5,5 gram, 6,5 gram dan 7,5 gram serta waktu kontak karbon aktif dengan minyak bekas pakai yaitu 40 menit, 60 menit, dan 80 menit. Hasil terbaik diperoleh pada massa karbon aktif sebesar 5,5 gram dan waktu kontak 80 menit. Kadar air sebesar 0,0559%, kadar FFA mengalami penurunan sebesar 84,15%, penurunan bilangan peroksida sebesar 89,15%, dan hasil tersebut telah memenuhi SNI 01.3741-2013.

Menurut Zunifer & Fortuna Ayu, (2020) ukuran dan waktu kontak karbon aktif yang terbuat dari kulit singkong dapat mempengaruhi kualitas dari minyak goreng bekas pakai. Dari penelitian tersebut dihasilkan ukuran partikel karbon aktif sebesar 100 mesh lebih efektif dibandingkan dengan karbon aktif yang berukuran 60 mesh. Waktu kontak karbon aktif dengan minyak bekas pakai yang paling efektif yaitu selama 6 jam. Karbon aktif kulit singkong berukuran 100 mesh dengan waktu kontak 6 jam menghasilkan kadar air sebesar 0,19%, bilangan peroksida 0,59 meg/kg, kadar asam lemak bebas 1,64%, dan berat jenis 0,88.

Tabel 2. 1 Ringkasan Penelitian Pendahuluan

No	Nama Belakang	Tujuan	Tujuan Hasil	
	Peneliti (Tahun)			
1	Dahlan dkk,	Menentukan	Adsorben	Bahan baku
	(2013)	aktivator HCl,	terbaik pada	yang
		NaCl, dan CaCl ₂	campuran	digunakan
		serta waktu	karbon aktif,	yaitu
		variasi terbaik	bentonit, dan	tempurung
		pada pembuatan	pasir kuarsa	kelapa dan
		karbon aktif biji	dengan jenis	jenis aktivator
		kelor untuk	aktivator terbaik	yang
		meningkatkan	yaitu HCl dan	digunakan
		kualitas minyak	waktu	yaitu kalsium
		bekas pakai	perendaman 24	hidroksida
			jam	(Ca(OH) ₂)
2	Lestari dkk,	Karakterisasi	Hasil terbaik	Jenis aktivator
	(2016)	karbon aktif dari	yang diperoleh	yang
		tempurung	yaitu bilangan	digunakan
		kelapa dengan	asam sebesar	yaitu Ca(OH) ₂
		aktivator asam	0,56 KOH/g	
		fosfat serta	pada karbon	
		menentukan	aktif tempurung	
		pengaruh ukuran	kelapa dengan	
		partikel pada	ukuran 80 mesh	
		adsorpsi minyak	dan variasi	
		goreng bekas	konsentrasi 8%.	
3	Octarya &	Mengembangkan	Penurunan	Bahan baku
	Fernando, (2016)	bahan baku	bilangan	yang

No	Nama Belakang	Tujuan	Hasil	Perbedaan
	Peneliti (Tahun)			
		alternatif berupa	peroksida dari	digunakan
		ampas tebu yang	10,12 Meq/Kg	yaitu
		teraktivasi NaCl	menjadi 3,93	tempurung
		dalam	meq/Kg,	kelapa dan
		pembuatan	sedangkan	jenis aktivator
		karbon aktif dan	kandungan asam	yang
		aplikasinya pada	lemak bebas	digunakan
		pemurnian	menurun dari	yaitu kalsium
		minyak bekas	2,4% FFA	hidroksida
		pakai	menjadi 0,49%	(Ca(OH) ₂)
		pakai		$(Ca(OH)_2)$
			FFA.	
4	Puspitasari,	Mengetahui	Hasil terbaik	Bentuk karbon
	(2017)	karakteristik	yang didapatkan	aktif berupa
		karbon aktif	dari penelitian	serbuk dan
		tempurung	tersebut yaitu	penggunaan
		kelapa berbentuk	pada konsentrasi	aktivasi suhu
		granular yang	Ca(OH) ₂ 1M	tinggi
		teraktivasi	dan tekanan 1,5	
		menggunakan	atm.	
		variasi		
		konsentrasi		
		Ca(OH) ₂ dan		
		tekanan.		
5	Syahrir &	Mengetahui	Dari penelitian	Bahan baku
	Syahrir, (2018)	efektivitas arang	tersebut	yang
	Symmi, (2010)	aktif dari kulit	dihasilkan	digunakan
		singkong	bilangan asam	yaitu
		Silignolig	onangan asam	yanu

No	Nama Belakang	Tujuan	Hasil	Perbedaan
	Peneliti (Tahun)			
		teraktivasi asam	0,99 mg	tempurung
		fosfat dalam	NaOH/gr dan	kelapa dan
		pemurnian	bilangan	jenis aktivator
		minyak bekas	peroksida 7,41	yang
		pakai	meq O ₂ /kg pada	digunakan
		pakai	perlakuan suhu	yaitu kalsium
			kontak 100°C	hidroksida
			dengan massa	(Ca(OH) ₂)
			karbon aktif 6	
			gram	
6	Oko dkk, (2020)	Mengetahui	Hasil terbaik	Bahan baku
		massa karbon	diperoleh pada	yang
		aktif dan ukuran	massa karbon	digunakan
		yang terbaik	aktif sebesar 5,5	yaitu
		karbon aktif dari	gram dan waktu	tempurung
		serbuk gergaji	kontak 80 menit	kelapa dan
		kayu ulin yang	dengan kadar air	jenis aktivator
		teraktivasi asam	sebesar	yang
		fosfat dalam	0,0559%, kadar	digunakan
		pemurnian	FFA mengalami	yaitu kalsium
		minyak bekas	penurunan	hidroksida
		pakai	sebesar 84,15%,	(Ca(OH) ₂)
			penurunan	
			bilangan	
			peroksida	
			sebesar 89,15%	

No	Nama Belakang	Tujuan	Hasil	Perbedaan
	Peneliti (Tahun)			
7	Zunifer &	Mengetahui	Dari penelitian	Bahan baku
	Fortuna Ayu,	pengaruh ukuran	tersebut	yang
	(2020)	partikel dan	dihasilkan	digunakan
		waktu kontak	ukuran partikel	yaitu
		karbon aktif kulit	karbon aktif	tempurung
		singkong	sebesar 100	kelapa dan
		teraktivasi	mesh lebih	jenis aktivator
		NaOH terhadap	efektif	yang
		karakteristik	dibandingkan	digunakan
		sensori minyak	dengan karbon	yaitu kalsium
		jelantah	aktif yang	hidroksida
			berukuran 60	(Ca(OH) ₂)
			mesh. Waktu	
			kontak karbon	
			aktif dengan	
			minyak bekas	
			pakai yang	
			paling efektif	
			yaitu selama 6	
			jam	

2.2 Teori-Teori Yang Relevan

2.2.1 Tempurung Kelapa

Tanaman kelapa (*Cocos nucifera L*) termasuk dalam famili palmae dan banyak tumbuh di wilayah dengan iklim tropis seperti Indonesia. Salah satu bagian tanaman kelapa yang paling penting adalah buah kelapa. Buah kelapa yang sudah tua terdiri atas 35% sabut, 12% tempurung kelapa, 28% endosperm, dan 25% air (Purnama, 2013). Kandungan kimia pada tempurung kelapa terdiri atas selulosa,

hemiselulosa, dan lignin. Semakin tinggi kandungan selulosa, hemiselulosa, dan lignin maka karbon aktif yang dihasilkan akan semakin baik (Takeuchi, 2006). Komposisi tempurung kelapa dapat dilihat pada tabel 2.2.

Tabel 2. 2 Komposisi Kimiawi Tempurung Kelapa

Komponen	Presentase (%)
Selulosa	34
Lignin	27
Hemiselulosa	21

(Sumber: Tamado dkk., 2013)

Tempurung kelapa biasanya dimanfaatkan sebagai bahan bakar secara langsung dalam bentuk arang. Selain sebagai bahan bakar langsung, tempurung kelapa juga dapat digunakan menjadi bahan adsorpsi yaitu berupa karbon aktif. Tempurung kelapa dapat dilihat pada gambar 2.1.

Gambar 2.1 Tempurung Kelapa (Sumber : Peneliti)

2.2.2 Pirolisis

Pirolisis adalah proses penguraian secara *thermal* material organik tanpa atau sedikit oksigen. Pirolisis umumnya dimulai pada suhu 200°C dan bertahan pada suhu 250-300°C (Lulrahman, 2018). Proses pirolisis menghasilkan tiga macam produk yaitu produk gas, cair, dan padat. Komposisi produk gas, cair, dan padat dapat dilihat pada tabel 2.4.

Tabel 2. 3 Kandungan Produk Pada Berbagai Jenis Pirolisis

Jenis Pirolisis	Komposisi		
	Gas	Cair	Padat
Pirolisis Cepat	13%	75%	12%
• Suhu 500°C			
Waktu pirolisis cepat			
Karbonisasi	35%	30%	35%
Suhu relatif rendah			
Waktu pirolisis lama			
Gasifikasi	85%	5%	10%
• Suhu tinggi (>800°C)			
Waktu pirolisis lama			

(Sumber: Setyawan dkk., 2013)

Pada proses pirolisis terjadi dekomposisi senyawa selulosa, hemiselulosa, dan lignin. Selulosa terdekomposisi pada suhu 280°C dan berakhir pada suhu 300-350°C. Sedangkan hemiselulosa terdekomposisi pada suhu 200-250°C dan lignin terdekomposisi pada suhu 300-350°C (Kasim dkk., 2015).

2.2.3 Arang Tempurung Kelapa

Arang tempurung kelapa adalah produk hasil dari pembakaran tempurung kelapa yang berbentuk padat. Tempurung kelapa yang dibakar pada suhu yang terkendali mengalami proses karbonisasi yang mengubah tempurung kelapa menjadi arang tempurung kelapa. Arang tempurung kelapa biasanya digunakan sebagai bahan bakar tetapi arang tempurung kelapa dapat juga digunakan sebagai media penjerap karena memiliki pori-pori yang lebih terbuka (Samlawi & Sajali, 2021). Arang tempurung kelapa dapat dilihat pada gambar 2.2.

Gambar 2.2 Arang Tempurung Kelapa (Sumber: Peneliti)

2.2.4 Karakteristik Arang Tempurung Kelapa

Karakteristik arang tempurung kelapa yang digunakan mengacu pada standar SNI 01-1682-1996 tentang syarat mutu dan pengujian arang tenpurung kelapa. Syarat mutu arang tempurung kelapa dapat dilihat pada tabel 2.4

Tabel 2. 4 Standar Kualitas Arang Tempurung Kelapa

Uraian	Persyaratan SNI	
Bagian yang hilang pada pemanasan 950°C (%)	Maks. 15	
Kadar Air (%)	Maks. 6	
Kadar abu (%)	Maks. 3	
Warna	Hitam merata	
Benda asing	Tidak boleh ada	

(Sumber: SNI 01-1682-1996)

2.2.4.1 Kadar Air Arang Tempurung Kelapa

Kadar air digunakan untuk mengetahui kualitas arang yang dihasilkan . kadar air berhubungan dengan kemampuan arang dalam menyerap molekul air di lingkungan sekitarnya (Kahariayadi dkk., 2015). Semakin kecil kadar air maka semakin baik arang yang dihasilkan.

2.2.4.2 Kadar Abu Arang Tempurung Kelapa

Kadar abu merupakan jumlah abu yang tersisa setelah proses pembakaran atau karbonisasi. Semakin banyak kadar abu yang dihasilkan maka semakin rendah kualitas arang tersebut (Kahariayadi dkk., 2015).

2.2.4.3 Warna Arang Tempurung Kelapa

Arang tempurung kelapa pada umumnya memiliki warna yang hitam merata dan juga mengkilap. Hal tersebut dapat terjadi akibat saat proses pembakaran tempurung kelapa teroksidasi membentuk unsur karbon yang memiliki pigmen berwarna hitam.

2.2.4.4 Benda Asing Arang Tempurung Kelapa

Benda asing pada arang tempurung kelapa dapat diartikan sebagai semua benda yang tidak termasuk arang tempurung kelapa. Arang tempurung kelapa yang tidak matang juga termasuk dalam benda asing pada arang tempurung kelapa.

2.2.5 Karbon Aktif

Karbon aktif merupakan bahan berwarna hitam berbentuk padat dengan poripori hasil proses pembakaran bahan yang mengandung senyawa karbon (Puspitasari, 2017). Karbon aktif disebut sebagai adsorben yang sangat efektif karena porositasnya tinggi, luas permukaan yang besar (dapat mencapai 3000 m²/g) karakteristik kimia permukaan, dan tingkat reaktivitas permukaan yang tinggi (Kwiatkowski, 2012). Menurut Dahlan dkk, (2013), secara garis besar terdapat tiga cara pembuatan karbon aktif yaitu:

1. Proses dehidrasi

Proses ini bertujuan untuk menghilangkan kandungan air yang terdapat di bahan baku. Salah satu cara yang digunakan yaitu dengan penjemuran dibawah sinar matahari secara langsung.

2. Proses karbonisasi

Karbonisasi atau pengarangan merupakan proses pemanasan pada suhu tertentu. Proses ini menyebabkan terurainya senyawa organik penyusun bahan baku.

3. Proses aktivasi

Aktivasi bertujuan untuk menghilangkan zat-zat yang menutupi pori-pori arang. Proses aktivasi dapat berlangsung secara kimia, fisika, dan kimia-fisika.

2.2.6 Aktivasi

Proses aktivasi bertujuan melepas hidrokarbon, tar, dan senyawa organik yang menempel pada karbon sehingga daya serap karbon semakin besar. Adapun cara aktivasi karbon menurut Ramadhani dkk (2020) sebagai berikut:

1. Aktivasi kimia

Aktivasi kimia merupakan terputusnya rantai karbon pada senyawa organik dengan bantuan bahan kimia. Bahan baku pembuat karbon aktif yang mengandung lignoselulosa biasanya menggunakan aktivasi kimia. Pada proses aktivasi secara kimia, karbon dicampur dengan bahan kimia biasanya berbentuk larutan yang berfungsi sebagai *activating agent*.

2. Aktivasi fisika

Aktivasi fisika merupakan terputusnya rantai karbon pada senyawa organik dengan bantuan uap, panas, dan karbon dioksida. Gas pada proses aktivasi digunakan untuk memperbesar pori-pori pada karbon sehingga luas permukaan karbon meningkat. Sementara itu, panas berfungsi untuk membuang zat pengotor mudah menguap dan hidrokarbon pengotor pada karbon (Anggraeni & Yuliana, 2015).

3. Aktivasi kimia-fisika

Aktivasi kimia-fisika merupakan gabungan dari aktivasi kimia dan aktivasi fisika. Tahapan proses biasanya diawali dengan mengubah material bahan baku menjadi karbon, kemudian dicampurkan dengan aktivator kimia pada reaktor berpengaduk dengan kondisi yang telah ditentukan sebelumnya kemudian dilakukan penetralan setelahnya. Setelah itu dilanjutkan dengan aktivasi fisika baik dengan pemanasan pada suhu tinggi maupun menggunakan tekanan. Aktivasi secara kimia-fisika memiliki keunggulan yaitu struktur pori yang lebih baik dan luas permukaan yang lebih tinggi dibanding dengan aktivasi secara kimia dan secara fisika (Ramadhani dkk., 2020).

2.2.7 Aktivator

Aktivator adalah suatu zat yang dapat mengurangi pengotor pada suatu bahan. Aktivator yang digunakan dalam penelitian ini yaitu kalsium hidroksida atau Ca(OH)₂. Kalsium hidroksida atau Ca(OH)₂ merupakan larutan basa dengan kekuatan sedang. Kalsium hidroksida adalah senyawa kristal tak berwarna atau bubuk putih. Sifat fisik dan kimia kalsium hidroksida dapat dilihat pada tabel 2.5.

Tabel 2. 5 Sifat Fisik dan Kimia Kalsium Hidroksida

Uraian	Keterangan
Bentuk	Padat
Warna	Putih
рН	12,4-12,6
Titik lebur	450°C
Titik didih	2.850°C
Kelarutan dalam air	1,85 g/L

(Sumber: MSDS Kalsium Hidroksida)

2.2.8 Karakteristik Karbon Aktif

Karakteristik karbon aktif yang digunakan mengacu pada standar SNI 06-3730-1995 tentang syarat mutu dan pengujian arang aktif teknis. Syarat mutu karbon aktif teknis dapat dilihat pada tabel 2.6.

Tabel 2. 6 Standar Kualitas Karbon Aktif

Uraian	Persyaratan SNI
Bagian yang hilang pada pemanasan 950°C (%)	Maks. 25
Kadar Air (%)	Maks. 15
Kadar abu (%)	Maks. 10

Uraian	Persyaratan SNI
Bagian yang tidak terarang	Tidak ternyata
Daya serap iodin (mg/g)	Min. 750
Karbon aktif murni (%)	Min. 65
Daya serap terhadap benzene (%)	-
Daya serap terhadap metilen biru (mg/g)	Min. 120
Kerapatan jenis curah (g/mL)	0,30-0,35
Lolos ukuran mesh 325%	Min. 90
Jarak mesh (%)	-
Kekerasan (%)	-

(Sumber: SNI 3730-1995)

2.2.8.1 Kadar Air

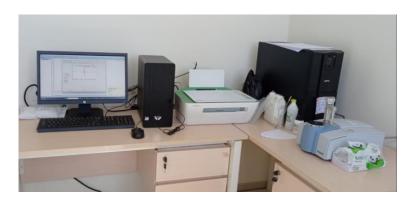
Kadar air merupakan air yang terkandung dalam karbon setelah karbon melewati proses karbonisasi dan aktivasi. Penentuan kadar air berfungsi untuk penentuan sifat higroskopis karbon aktif. Kadar air pada karbon aktif meningkat karena air dari udara diserap oleh karbon aktif (Legiso dkk., 2019).

2.2.8.2 Kadar Abu

Kadar abu merupakan sisa mineral yang tertinggal pada saat karbon dibakar (Puspitasari, 2017). Kadar abu dapat dipengaruhi oleh suhu dan lama waktu pengkarbonan.

2.2.8.3 Daya Serap Iodin

Daya serap iodin bertujuan untuk mengetahui kapasitas adsorpsi karbon aktif terhadap larutan berbau (Sahara dkk., 2017). Semakin tinggi daya serap iodin maka


semakin luas permukaan karbon aktif sehingga kemampuan adsorpsinya terhadap zat terlarut semakin besar (Anggraeni & Yuliana, 2015).

2.2.8.4 Daya Serap Metilen Biru

Metilen biru adalah satu salah karakteristik yang harus dimiliki oleh karbon aktif. Daya serap metilen biru bertujuan untuk mengetahui kemampuan adsorpsi karbon aktif terhadap larutan berwarna (Sahara dkk., 2017).

2.2.9 Gugus Fungsi Karbon Aktif

Analisis gugus fungsi bertujuan untuk mengetahui struktur suatu senyawa organik. Salah satu alat yang umum digunakan yaitu instrumen *Fourier Transform Infra Red* atau FTIR. Pegujian ini menggunakan penyerapan frekuensi radiasi inframerah pada sampel (Dachriyanus, 2004). Instrumentrasi FTIR dapat dilihat pada gambar 2.4.

Gambar 2. 3 Fourier Transform Infra Red (FTIR) (Sumber: Peneliti)

2.2.10 Luas Permukaan Karbon Aktif

Pengujian luas permukaan karbon aktif bertujuan salah satunya untuk memperkirakan daya serap dari karbon aktif tersebut. luas permukaan karbon aktif dapat diukur menggunakan metode *Brunauer*, *Emmett*, *and Teller* atau BET dan menggunakan instrumen *surface area analyzer* atau SSA. Teknik ini menggunakan metode mengekspos padatan ke dalam gas atau uap pada kondisi bervariasi dan mengukur pertambahan berat atau volume sampel (Ardiyan, 2017).

2.2.11 Adsorpsi

Adsorpsi adalah pengumpulan molekul-molekul zat pada permukaan zat lain akibat ketidakseimbangan gaya pada permukaan zat tersebut (Triyanto, 2013). Pada umumnya adsorpsi dibedakan menjadi dua jenis yaitu adsorpsi fisika dan adsorpsi kimia.

1. Adsorpsi Fisika

Adsorpsi fisika dapat disebut juga adsorpsi *Van Der Waals* merupakan suatu proses bolak balik apabila tejadi gaya tarik menarik antara zat terlarut dengan adsorben lebih besar dibandingkan antara zat terlarut dengan pelarutnya maka zat terlarut akan teradsorpsi pada permukaan adsorben. Pada adsorpsi fisika adsorbat dan adsorben dianggap sebagai dua sistem individu. Adsorpsi fisika memiliki energi adsorpsi yang kecil (<20 kJ/mol) dibandingkan adsorpsi kimia (>20 kJ/mol) (Triyanto, 2013).

2. Adsorpsi Kimia

Adsorpsi kimia merupakan reaksi yang terjadi antara zat padat dan zat terlarut yang teradsorpsi. Pada adsorpsi kimia, molekul adsorbat membentuk ikatan homogen dengan adsorben. Adsorpsi kimia melibatkan ikatan koordinasi dari hasil pertukaran elektron oleh padatan adsorben dan adsorbat (Triyanto, 2013).

2.2.12 Minyak Bekas Pakai

Minyak bekas pakai atau lebih dikenal dengan minyak jelantah merupakan minyak yang berasal dari sisa penggorengan bahan makanan. Penggunaan minyak goreng yang berulang dapat menyebabkan oksidasi asam lemak tak jenuh yang kemudian membentuk gugus peroksida dan dapat mengalami penurunan mutu diantara warna yang berubah, tingkat kekentalan, angka peroksida dan angka asam (Mardiyah, 2016). Faktor yang menyebabkan kerusakan minyak yaitu suhu atau panas. Standar panas penggorengan minyak biasanya 177-221°C, sedangkan kebanyakan orang menggoreng pada suhu 200-300°C (Krismaya dkk., 2016).

Kadar peroksida yang tinggi menyebabkan bau tengik pada minyak bekas pakai. Hal ini selaras dengan teori Sudarmadji, (2003) bahwa tingkat ketengikan pada minyak berbanding lurus dengan kadar peroksida. Apabila minyak bekas

pakai dibuang ke lingkungan tanpa ada pengolahan akan sangat berdampak pada lingkungan seperti adanya lapisan minyak dalam air, menurunnya konsentrasi oksigen terlarut dalam air, berkurangnya cahaya matahari yang masuk ke badan air, pada suhu rendah limbah minyak bekas pakai akan membeku dan menyumbat saluran pipa sehingga membuat saluran pembuangan terganggu (Kusnadi, 2018). Selain itu, kadar asam lemak yang tinggi dapat membahayakan kesehatan manusia seperti berpengaruh pada lemak darah yang kemudian berpengaruh pada kegemukan (Fauziah dkk., 2013). Minyak bekas pakai dapat dilihat pada gambar 2.3.

Gambar 2.4 Minyak Goreng Bekas Pakai (Sumber : Peneliti)

2.2.13 Karakteristik Minyak Goreng

Karakteristik minyak goreng yang digunakan mengacu pada standar SNI 3741:2013 tentang syarat mutu dan pengujian minyak goreng. Syarat mutu minyak goreng dapat dilihat pada tabel 2.7.

Tabel 2. 7 Standar Kualitas Minyak Goreng

Kriteria Uji	Satuan	Persyaratan SNI
Bau	-	Normal
Warna	-	Normal

Kriteria Uji	Satuan	Persyaratan SNI
Kadar air dan bahan menguap	Fraksi massa, %	Maks. 0,15
Bilangan asam	mg KOH/gram	Maks. 0,6
Bilangan peroksida	mek O ₂ /kg	Maks. 10
Asam linoleat (C18:3) dalam komposisi asam lemak minyak	%	Maks. 2
Minyak pelikan	-	Negatif
Cadmium (Cd)	mg/kg	Mask. 0,2
Timbal (Pb)	mg/kg	Maks. 0,1
Timah (Sn)	mg/kg	Maks. 40,0/250,0
Merkuri (Hg)	mg/kg	Maks. 0,05
Cemaran arsen (As)	mg/kg	Maks. 0,1

(Sumber: SNI 3741:2013)

2.2.13.1 Bilangan Asam

Bilangan asam merupakan salah satu parameter untuk mengetahui kualitas minyak atau lemak. Bilangan asam digunakan untuk mengukur jumlah asam lemak bebas yang terdapat dalam minyak. Asam lemak bebas merupakan asam lemak yang lepas dari gliserol (Khoirunnisa dkk., 2020). Bilangan asam menandakan jumlah mg KOH/NaOH yang dibutuhkan untuk menetralkan 1 gram sampel minyak goreng. Penetuan bilangan asam dapat dilakukan menggunakan metode titrasi.

2.2.13.2 Bilangan Peroksida

Bilangan peroksida merupakan parameter penting untuk menentukan kerusakan pada minyak atau lemak. Bilangan peroksida menunjukkan terjadinya oksidasi pada minyak. Pada saat pertama proses oksidasi akan terbentuk senyawa

peroksida yang merupakan senyawa labil dan mudah bereaksi. Selanjutnya terbentuk senyawa keton dan aldehid yang menyebabkan bau tengik (Suroso, 2013). Bilangan peroksida berguna untuk penentuan kualitas minyak setelah pengolahan dan penyimpanan (Khoirunnisa dkk., 2020).

2.3 Hipotesis

Dugaan sementara yang dapat diambil dari penelitian ini adalah sebagai berikut:

- Konsentrasi larutan Ca(OH)₂ dapat mempengaruhi karakteristik karbon aktif tempurung kelapa berupa kadar air, kadar abu, daya serap iodin, dan daya serap metilen biru sesuai SNI 3730-1995.
- 2. Konsentrasi Ca(OH)₂ yang optimum untuk menghasilkan karbon aktif terbaik yaitu konsentrasi Ca(OH)₂ 1,5 M.
- Ukuran partikel dapat mempengaruhi karakteristik karbon aktif tempurung kelapa berupa kadar air, kadar abu, daya serap iodin, dan daya serap metilen biru sesuai SNI 3730-1995.
- 4. Ukuran partikel yang optimum untuk menghasilkan karbon aktif terbaik yaitu konsentrasi Ca(OH)₂ 120 mesh.
- 5. Karbon aktif dari tempurung kelapa tanpa aktivasi, karbon aktif tempurung kelapa teraktivasi Ca(OH)₂ optiumum, dan karbon aktif komersial memiliki gugus fungsi yang sama tetapi memiliki panjang gelombang yang sedikit berbeda.
- 6. Karbon aktif tempurung kelapa memiliki luas permukaan yang lebih tinggi dibanding luas permukaan karbon aktif komersial.
- 7. Karbon aktif tempurung kelapa yang teraktivasi Ca(OH)₂ lebih efektif dari karbon aktif komersial dalam menurunkan bilangan asam pada minyak bekas pakai dengan penurunan bilangan asam diatas 80%.
- 8. Karbon aktif tempurung kelapa yang teraktivasi Ca(OH)₂ lebih efektif dari karbon aktif komersial dalam menurunkan bilangan peroksida pada minyak bekas pakai dengan penurunan bilangan peroksida diatas 80%.