Tabel 1 Faktor keamanan mekanisme pesawat angkat

0, 5	TIPE ALAT PENGANGKAT	Digerakkan oleh:	Kondisi peng- operasian	Faktor <i>K</i>	Faktor e ₁
I.	Lokomotif, caterpillar-mounted, traktor dan truk yang mempunyai crane pilar (termasuk excavator yang dioperasikan	Tangan Daya Daya	Ringan Ringan Medium	4 5 5,5	16 16 18
	sebagai crane dan pengangkat mekanik pada daerah konstruksi dan pekerjaan	Daya	Berat dan Sangat berat	6	20
II.	berkala Semua tipe lain dari crane dan	Tangan	Ringan	4,5	18
н.		Daya	Ringan	5	20
	pengangkat mekanis	Daya	Medium Berat dan Sangat berat	5,5 6	25 30
III.	Derek yang dioperasikan dengan tangan dengan kapasitas beban terangkat di atas 1 ton yang digandeng pada berbagai	10	Sangar sorar	111	
	peralatan otomatif (mobil, truk, dan			4	12
IV. V.	sebagainya) Pengangkat dengan troli Penjepit mekanis (kecuali untuk puli	- -	=	5,5	20
	pada grabs) untuk pengangkat mekanis pada No. I	_		5	20
VI.	Idem untuk pengangkat mekanik pada no. II.		_	5	30

- Catatan:

 1. Kondisi pengoperasian alat pengangkat dapat dilihat pada Tabel 2 dan 3

 2. Pada tali yang digunakan untuk lift penumpang, faktor K paling kecil 14.

 5. Faktor K dari tali sling paling kecil dari 10.

 6. Penentuan diameter minimum dari puli pada penjepit alat pengangkat tidak dihitung pada bagian I, II, dan IV, faktor berkurang di bawah 18.

 6. Faktor keamanan tali untuk pengangkat katrol pembawa cairan atau logam putih panas, asam, larutan panas yang berbahat bahan peledak sama dengan 6.0 tidak tereantung kondici pengangkat katrol pembawa cairan atau logam putih panas, asam, larutan panas yang berbahat

Tabel 2 Jumlah lengkungan tali baja

Jumlah lengkungan	$\frac{D_{min}}{d}$	Jumlah lengkungan	$\frac{D_{min}}{d}$	Jumlah lengkungan	$\frac{D_{min}}{d}$	Jumlah lengkungan	$\frac{D_{min}}{d}$
1	16	5	26,5	9	32	13	36
2	20	6	28	10	33	14	37
3	23	7	30	11	34	15	37,5
4	25	8	31	12	35	16	38

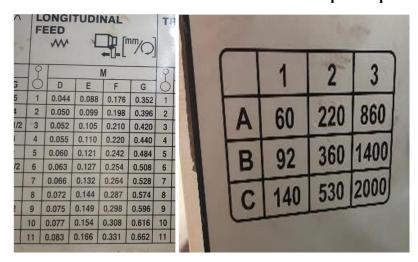
Tabel 3 Dimensi alur drum

Dia- meter tali d	r ₁	Standar		Dalam			Dia- meter	7,	Sta	andar		Dalar	n
		S 1	c_1	s_2	. c ₂	r ₂	tali d	an	s_1	c_{i}	s_2	C2	r ₂
4.8 6,2 8,7 11,0 13,0 15,0	3,5 4,0 5,0 7,0 8,0 9,0	7 8 11 13 15	2 2 3 3 4 5	9 11 13 17 19 22	4,5 5,5 6,5 8,5 9,5 11,0	1,0 1,5 1,5 1,5 1,5 2,0	19,5 24,0 28,0 34,5 39,0	11,5 13,5 15,5 19,0 21,0	22 27 31 38 42	5 6 8 10 12	27 31 36 41 50	13,5 16,0 18,0 22,0 24,5	2,0 2,5 2,5 3,0 3,5

Tabel 4 Tegangan tarik material Standar jepang

Standar dan macam	Lambang	Perlakuan Panas	Kekuatan Tarik (kg/mm2)	Keterangan
Baja Karbon Konstruksi Mesin (JIS G 4501)	S30C S35C S40C S45C S50C S55C	Penormalan Idem Idem Idem Idem idem	48 52 55 58 62 66	
Batang Baja yang difinis Dingin	S35C-D S45C-D S55C-D		53 60 72	Ditarik dingin, digerinda, dibubut atau gabungan hal-hal tsb

Tabel 5 Jenis pahat, geometri pahat, v, dan f (Widarto, 2008)


Workpiece	Tensile	1,			Feed in mm/rev.				Coolant and Lubricant		
material	strength	Tool			0.1		0.4	0.8		1	
	in kp/mm ²		× 00	1 20	cutting speed v m/min				Roughing	Finishing	
Steel St 34, St 37, St 42	up to 50.	SS S ₁	8	14	280	60 236	45 200	34 170	E	E or P.	
St 50, St 60	5070	SS S ₁	8 5	14 10	240	44 205	175	24 145	E	E or P	
St 70	7085	SS S ₁	8	14 10	200	170	132	18	E	E or P	
Cast steel	5070	SS S ₁	8	10 6	118	34 100	25 85	19 71	E	dry	
Alloyed steel	85100	SS S ₁	8	10 6	150	24 118	17 95	12 75	E	E or P	
Mn-Steel, Cr-Ni- steel, Cr-Mo-steel	100140	SS S ₁	8 5	6 6	95	16 75	11 60	8 50	E	E or P	
other alloyed steels	140180	SS S ₁	8 5	6	60	9,5 48	6 38	32	E	E or P	
Tool steel	150180	SS S,	8	6	50	40	32	27	E	Colza oil or P	
C.1.20, C.1.25	Brinell 200250	ss H,	8	0	106	32 90	18	13 63	dry or E	dry	
Copper alloys	hardness Brinell 80120	SS_	8	0	600	125	85 450	56	dry,EorL	dry	
Cast bronze		SS G.	8	0	355	63 280	53 236	43	E or L	dry	
Light alloys aluminium		SS G ₁	12	30 30	400 1320	300 1120	200 950	118 850	E or P soap spi- rit	E or P soap spi- rit	
Aluminium alloys (1113%Si)	*	SS G.	12	18	100	190	160	30 140	E	Oil S II or P	
Magnesium alloys*		SS G ₁	5	6	1000	900 1500	800 1250	750 1060		dry or with non-combustible oil	
Platics and hard rubber		SS G,	12 12	10	300	280	250	224	dry	dry	
Bakelite, Novo- text, Pertinax hard plastic		SS G ₁	12 12	14 14	280	212	170	132	dry	dry	

Tabel 6 Kecepatan potong proses bubut rata dan proses ulir untuk pahat HSS (Widarto,2008)

MATERIAL	STRAIGHT	TURNING SPEED	THREADING SPEED			
	FEET PER MINUTE	METERS PER MINUTE	FEET PER MINUTE	METERS PER MINUTE		
LOW-CARBON STEEL	80-100	24.4-30.5	35-40	10.7-12.2		
MEDIUM-CARBON STEEL	60-80	18.3-24.4	25-30	7.6-9.1		
HIGH-CARBON STEEL	35-40	10.7-12.2	15-20	4.6-6.1		
STAINLESS STEEL	40-50	12.2-15.2	15-20	4.6-6.1		
ALUMINUM AND ITS ALLOYS	200-300	61.0-91.4	50-60	15.2-18.3		
ORDINARY BRASS AND BRONZE	100-200	30.5-61.0	40-50	12.2-15.2		
HIGH-TENSILE BRONZE	40-60	12.2-18.3	20-25	6.1-7.6		
CAST IRON	50-80	15.2-24.4	20-25	6.1-7.6		
COPPER	60-80	18.3-24.4	20-25	6.1-7.6		

NOTE: Speeds for carbide-tipped bits can be 2 to 3 times the speed recommended for high-speed steel

Tabel 7 Gerak Makan Pada Mesin Bubut dan Kecepatan Spindel

BIODATA PENULIS

Nama : Erik Ardiansyah

Tempat/Tanggal : Cilacap / 9 Oktober 2000

Lahir

Alamat : Mertasinga RT.02 RW.01,

Kec. Cilacap Utara, Kab. Cilacap, Jawa Tengah

Hp : (+62) 83846752991

Hobi : Olahraga

Motto : Jangan takut mengaku bodoh untuk menjadi pintar

karena orang yang mengaku pintar akan selalu

bodoh.

Riwayat Pendidikan:

SD N 3 Mertasinga Tahun 2007 - 2013SMP N 8 Cilacap Tahun 2013 - 2016SMK N 2 Cilacap Tahun 2016 - 2019Politeknik Negeri Cilacap Tahun 2019 - 2023

Penulis telah mengikuti seminar Tugas Akhir pada Januari 2023, sebagai salah satu persyaratan untuk memperoleh gelar Ahli Madya (A. Md).