BAB III METODOLOGI DAN PERANCANGAN

Perancangan sistem dilakukan sebagai langlah awal persiapan, sebelum alat siap direalisasikan untuk memastikan agar sistem dapat berjalan sesuai fungsinya. Perancangan sistem ini meliputi perangkat lunak(*software*) dan perangkat keras(*hardware*).

3.1 Blok Diagram

Blok diagram digunakan untuk memperjelas sistem kerja dari alat yang akandibuat. Berikut blok diagram yang akan diterapkan pada proses pembuatan tugas akhir.

Gambar 3. 1 Diagram Blok

Pada gambar block diagram diatas terdiri dari input dan ouput dari sistem ini. Input terdiri dari sensor pH sebagai pengukur kadar asam dan basa pada tanah, modul rtc sebagai timer waktu real untuk mengkontrol penyiraman, soil moisture sensor sebagai pendeteksi kelembaban pada tanah bilamana pada saat penyiraman jika sudah lembab maka pompa mati, dan catu daya sebagai sumber untuk mikrokontroler esp32. Adapun ouput pada sistem ini yang terdiri dari water pump sebagai pompa yang akan menyiram tanaman pada waktu yang telah di tentukan, solenoid valve sebagai kran elektrik untuk membuka dan menutup pupuk cair, dan juga thiner.io sebagai platform iot untuk menampilkan data sensor yang telah terbaca ke apps maupun thinger.

3.2 Flowchart

Flowchart atau dalam bahasa Indonesia disebut Diagram alir atau bagan yang mewakili algoritma. Alir kerja atau proses, yang menampilkan langkah langkah dalam bentuk simbol-simbol grafis dan urutannya dihubungkan dengan panah.

Gambar 3. 2 Flowchart

Pada flowchart diatas merupakan diagram alir dari sistem "ALAT PENYIRAMAN TANAMAN CABAI MENGGUNAKAN pH METER DAN SENESOR KELEMBABAN DENGAN MONITOR BERBASIS IoT". Dimana pada flowchart tersebut menjelaskan penyiraman tanaman cabai yang dilakukan pada saat pukul 07.00 dan pukul 17.00 setiap harinya serta jika kondisi kelembaban tanah tidak kering maupun tidak basah maka water pump akan off. Sedangkan jika setiap tiga minggu sekali solenoid akan on untuk menyiram pupuk cair.data kelembaban akan selalu terkirim ke thinger.io agar dapat untuk memantau dari jauh dengan syarat koneksi internet stabil.

Gambar 3. 3 Flowchart Pupuk

Pada flowchart diatas merupakan flowchart dari pupuk dimana jika rtc membaca setiap 3 minggu sekali dan jika tidak m=rtc masih membaca dan belim mengirim perintah kepada valve jika sudah 3 minggu maka valve akan on selama 1 menit dan setelah itu akan off.

Gambar 3. 4 Flowchart Sensor pH

Pada gambar flowchart diatas merupakan diagram alur dari sensor pH dimana sensor pH akan dibaca oleh mikrokontroler dan setelah itu akan mengirim data ke IoT lalu data yang dikirim akan di tampilkan melalui thinger.io.

3.3 Analisa Kebutuhan

Analisa kebutuhan bertujuan untuk mengatahui alat dan bahan apa yang di butuhkan dalam melakakukan penelitian. Alat dan bahan yang di butuhkan penulis adalah perangkat keras penelitian yang dibutuhkan penulis adalah perangkat lunak dan perangkat keras komputer yang mempunyai spesifikasi yang cukup baik dalam melakukan penelitian ini yaitu "Alat penyiram dan *monitor* dengan IoT tanaman cabai menggunakan sensor pH dan kelembaban". Berikut adalah perangkat keras yang digunakan pada Tael 3.1. di bawah ini.

NO	Komponen	Jumlah	Fungsi			
Alat						
1	Laptop Acer,RAM	1 buah	Sebagai hardware dalam			
	4GB Procecor Amd9		pembuatan program dan			
			desain			
2	Multimeter	1 buah	Sebagai alat ukur			
			mengukur tegangan pada			
			rangkaian			
3	Tang Potong	1 buah	Sebagai alat memotong			
			kabel dan kabel-tie			
4	Tang Kombinasi	1 buah	Sebagai alat mengupas			
			kabel			
5	Gerinda Tangan	1 buah	Umtuk memotong dan			
			menghaluskan besi			
6	Bor Tangan	1 buah	Untuk memasang baut			
			roofing pada rangka			
7	Obeng (+)	1 buah	Untuk memasang box			
			panel			
8	Obeng (-)	1 buah	Untuk memasang box			
			panel			
9	Mesin Las	1 buah	Untuk menyambung			
			bagian-bagian rangka			
Baha	n					
1	Esp32	1 buah	Untuk mengirim dan			
			memproses sitem kontrol			
			dan monitor			

Tabel 3. 1 Alat Dan Bahan

Relay	2 buah	Untuk mengaliri arus
		listrik ke pompa dan
		valve
Sensor pH	1 buah	Untuk mengukur kadar
		pH pada media tanam
Catu daya 12v	1 buah	Untuk memasok atau
		sumber energy listrik
		pada sistem <i>monitor</i> dan
		kontrol
Water Pump	1 buah	Sebagai pompa untuk
_		menyiram tanaman cabai
RTC	1 buah	Sebagai modul untuk
		pengukuran waktu
Nozzle	2 buah	Sebagai sprayer agar
		hasil penyiraman menjadi
		kabut
Capasitive Soil	1 buah	Untuk mendeteksi
Moisture		kelembaban pada media
		tanam
Selenoid Valve	1 buah	Sebagai kran elektrik
		pada penyiraman pupuk
Pipa pvc ¹ / ₂ "	5meter	Untuk menyalurkan atau
		mendistribusikan air dari
		ember ke tanaman
Box panel 30cm x	1 buah	Untuk wadah dari
20cm		rangkaian
Besi holo 4x4	6meter	Untuk membuat rangka
		penyiraman
Elbow	7 buah	Untuk menyambungkan
		pipa pvc
Isolasi	1 buah	Untuk mencegah hubung
		singkat pada kabel
 Lem dan solatip pipa	1 buah	Untuk merekatkan
		sambungan pipa dengan
		elbow
Ember 81	2 buah	Untuk tempat wadah air
		dan pupuk

3.4 Perancangan alat

3.4.1 Desain mekanik

Dalam perancangan "Alat Penyiraman Tanaman Cabai Menggunakan pH Meter Dan Senesor Kelembaban Dengan Monitor Berbasis Iot Dan Metode Sprayer"ini terdapat dua bagian yaitu pembuatan dudukan panel dengan tinggi 50cm dan dudutkan bak penampung air nutrisi dengan tinggi 17cm. Adapun desai alat yang akan di buat sebagai berikut :

Gambar 3. 5 Tampak Depan

Gambar 3. 6 Tampak Samping

Keterangan komponen pada Gambar 3.2.

- 1. Tandon
- 2. Solenoid valve
- 3. Box panel
- 4. Besi hollow
- 5. Pipa paralon
- 6. Media tanam
- 7. Ember

3.4.2 Perancangan monitor menggunakan website Thinger.Io

Perancangan ini digunakan untuk menampilkan hasil pengukuran sensor . Dimana akan ditampilkan dalam bentukkolom angka untuk hasil sensor. Hasil pembacaan sesnsor ditampilkan secara real time pada tiap hasil pengukuran di sistem Thinger.IO.Adapun langkah-langakah dalam membuat sistem website atau adafruit io ini yaitu : a) Membuat akun pada website Thinger.IO dan Sign In

Pembuatan akun ini dilakukan dengan cara mengisi SignIn yang berupa email atau username dan password dari Thinger.IO. Kemudian lakukan verifikasi capthca dan klik *SignIn*, selanjutnya browser akan diarahkan ke laman dashboard atau laman akun yang telah terdaftar di Thinger.IO.

b) Membuat Devices pada Thinger.IO

Devices merupakan salah satu tampilan menu pada website Thinger.IO yang berfungsi untuk menampilkan nama perangkat yang terkoneksi atau memiliki akses dengan akun Thinger.io yang digunakan saat itu juga. Jika perangkat sudah terdaftar dan sedang dalam keadaan online, maka pada kolom state akan berwarna hijau dengan tulisan connected. Sementara saat offline akan tertulis disconnected. Cara membuat devices baru pada websitThinger.IO yaitu dengan klik add devices lalu isi nama atau judul devices yang dibuat lalu klik kembali add devices setelah itu klik nama devices yang dibuat, maka akan tampilseperti pada Gambar 3.4.

Gambar 3. 7 Tampilan Device Thinger.io

c) Membuat Dashboards pada Thinger.IO

Dashboards merupakan interface untuk pengguna yang menampilkan informasi dalam berbagai bentuk grafik, tombol button maupun angka. Tampilan pada dashboards dapat diatur sesuai kebutuhan.

Cara membuat dashboards baru yaitu dengan klik add dashboards lalu isi nama dashboards dan isi id dashboards setelah itu klik kembali add dashboards dan klik nama dashboards yang telah dibuat, maka akan tampil seperti pada Gambar.

Gambar 3. 8 Tampilan Dashboards Thinger.Io

Setelah itu lalu tekan add widget kemudian isi judul widget yang akan dibuat dan pilih type tampilan widget yang dibuat seperti pada Gambar

Widget			
Title 🚺	Widget Title		
Subtitle 🕕	Widget Subtitle		
Link To 🕄	Select Dashboard		
Show Update 🕕			
Show Fullscreen			
Background ()	+		
Туре 🚯	Select widget type	*	

Gambar 3. 9 Tampilan Widget Thinger.Io

Klik teks/value isi data source semua nya, sesudah itu klik save seperti pada Gambar

Nidget	Text/Value	Display Options			
Data Source 🕕		From Device Resourc	e	10	
		Select Device			
		🗬 Kominikasi		3	
		Enter Resource Name			
		Dataku			
		Select Value			
		tdsValue 🗸			
		Refresh Mode			
Sampli		Sampling Interval 👻	1	seconds -	

Gambar 3. 10 Tampilan Text/Value Thinger.io

Sesudah mengantur dashboards sepert pada Gambar 3.7, maka dashboards bisa digunakan untuk monitor sensor.

3.4.3 Perancangan Aplikasi Android

Perancangan aplikasi android yang digunakan untuk menampilkan data dari webite Thinger.IO yaitu dengan cara mendownload aplikasi Thinger.IO di play store seperti pada Gambar

Gambar 3. 11 Aplikasi Thinger.io

Setelah mendownload aplikasi Thinger.IO buka aplikasi Thinger.IO dan login menggunakan pasword dan kata sandi yang telahdibuat di website Thinger.IO.

Gambar 3. 12 Laman Login

3.4.4 Perancangan kelistrikan dan perkabelan

Wiring atau perkabelan digunakan untuk mengetahui sambungan komunikasi setiap komponen ke mikrokontroler yang digunakan, *wiring* ini dirancang menggunakan software *fritzing*

3.4.4.1 Rangkaian rtc

fritzing

Gambar 3. 13 Wiring RTC

Wiring rangkaian rtc digunakan yang dapat menghitung waktu dengan akurat dan menjaga/menyimpan data waktu tersebut secara real time agar dapat menjadi timer untuk waktu penyiraman tanaman pada sistem.

Tabel 3. 1 Pin RTC

RTC	Keterangan
SDA	Dihubungkan pada pin GPIO21
SCL	Dihubungkan pada pin GPIO23
GND	Dihubungkan pada pin GND Esp32
VCC	Dihubungkan pada pin 5V Esp32

3.4.4.2 Rangkaian soil moisture

Gambar 3. 14 Rangkaian Soil Moisture

Wiring pada rangkaian ini merupakan rangkaian pengkabelan rangkaian untuk soil moisture. Sensor ini terdiri probe untuk melewatkan arus melalui tanah, kemudian membaca resistansinya untuk mendapatkan nilai tingkat kelembaban. Pada sensor ini memiki 3 pin yaitu pin GND, VCC, dan AO. AO sensiri merupakan pin analog

Soil Moisture Sensor	Keterangan
AO	Dihubungkan pada pin GPIO36
GND	Dihubungkan pada pin GND Esp32
VCC	Dihubungkan pada pin 5V Esp32

Tabel 3.	2 Pin	Sensor	Soil	Moisture
----------	-------	--------	------	----------

3.4.4.3 Rangkaian sensor pH tanah

Gambar 3. 15 Rangkaian Sensor pH Tanah

Pada rangkaian ini merupakan rangkain untuk sensor pH tanah dimana terdapat elektroda pada sensor untuk mendeteksi kadarpHdari suatu tanah. Sensor pH berbentuk batang elektroda yang akan dihubungkan pada mikrokontoler yang terdiri dari perkbelan yaitu GND DAN Analog, sensor ini sama dengan sensor pH yang digunakan pH meter tanah yang sudah dijual dipasaran. Rentang pengukuran pada sensor pH ini dari 2,5 sampai 9 skala pH, cara penggunannya yaitu dengan menancapkan batang sensor ke tanah sampai kedalaman 15cm atau 20cm.

Tabel 3. 3 Pin Sensor pH

Soil Moisture Sensor	Keterangan
AO	Dihubungkan pada pin GPIO34
GND	Dihubungkan pada pin GND Esp32

3.4.4.4 Rangkaian relay water pump dan solenoid valve

Gambar 3. 16 Rangkaian Kontrol

Pada gambar diatas merupakan rangkaian *control* yang terdiri dari esp32, relay 2 buah,1buah waterpump,dan 1buah solenoid valve. Digunakan untuk menyiram air dan pupuk cair sesuai jadwal yang telah di tentukan.

Komponen	PIN	KETERARANGAN
	GND	Dihubungkan pada pin GND esp32
Relay1	VCC	Dibungkan pada pin 3.3V esp32
	IN	Dihubungkan pada pin GPIO 25
	GND	Dihubungkan pada pin GND esp32
Relay2	VCC	Dihubungkan pada pin 3.3V esp32
	IN	Dihubungkan pada pin GPIO 26

Tabel 3. 4 Konfigurasi pin rangkaian kontrol

3.4.4.5 Rangkaian sistem keseluruhan

Gambar 3. 17 Rangkaian Sistem keseluruhan

Pada gambar rangkian diatas merupakan gambar perancangan rangkaian sistem yang akan di buat.

Komponen	PIN	KETERARANGAN
	GND	Dihubungkan pada pin GND esp32
Relay1	VCC	Dibungkan pada pin 3.3V esp32
	IN	Dihubungkan pada pin GPIO 25

Tabel 3.	. 5Konfigusi	Pin	Rangkaian	Sistem
----------	--------------	-----	-----------	--------

Komponen	PIN	KETERARANGAN
	GND	Dihubungkan pada pin GND esp32
Relay2	VCC	Dihubungkan pada pin 3.3V esp32
	IN	Dihubungkan pada pin GPIO 26
	VCC	Dihuibungkan pada pin 3.3V esp32
RTC	GND	Dihubungkan pada pin gnd esp32
	SDA	Dihubungkan pada pin GPIO22
	SCL	Dihubungkan pada pin GPIO 23
	VCC	Dihubungkan pada pin 5v Arduino
SOIL MOISTURE	GND	Dihubungkan pada pin gnd Arduino
	ANALOG	Dihubungkan pada pin A1 arduino
SENSOR pH	GND	Dihubungkan pada pin GND Arduino
	ANALOG	Dihubungkan pada pin A0 Arduino
ARDUINO	RX	Dihubungkan pada pin TX2 esp32
	TX	Dihubungkan pada pin RX2 esp32

~Halaman Ini Sengaja Dikosongkan~