BAB II

TINJAUAN PUSTAKA

2.1 Perbandingan Penelitian Terdahulu

Mengetahui efektifitas *prototype* filter hidrogen sulfida (H₂S) menggunakan kombinasi *wet scrubber* dan proses filtrasi dapat dikatakan efektif mengurangi polutan dalam pencemaran udara. Penggunaan *wet scrubber* dalam proses yang ada di alat lebih efektif dibandingkan dengan proses kombinasi dengan penambahan media filter batu lava. Dilihat dari efektivitas kombinasi sebesar 75% sedangkan *wet scrubber* sebesar 83,3%. Penggunaan *wet scrubber* pada variasi waktu 10 menit dan 20 menit memiliki efektivitas paling besar 83,3%, sedangkan efektivitas paling rendah pada proses *wet scrubber* dan kombinasi sebesar 4,6 %. Skala kebauan tertinggi dengan nilai -1,4 yang dapat dikategorikan "agak bau" pada variabel *wet scrubber* waktu 10 menit dan skala kebauan paling rendah yaitu pada kombinasi dengan waktu uji 10 menit sebesar -2,7 yang dapat dikategorikan "bau" (Abdillah, 2021).

Efisiensi penjerapan H₂S paling tinggi diperoleh pada penyerapan H₂S dalam biogas untuk ukuran arang aktif -6 +8 mesh dan ketinggian tumpukan 8 cm, diperoleh efisiensi penyerapan H₂S setelah 10 menit mencapai 83,16%. Konstanta kesetimbangan arang aktif teraktivasi KOH 0,5 M dengan metode Langmuir sebesar -239,981 dan metode Freundlich sebesar 824,89. Berdasarkan nilai koefisien korelasi (R2), pada model isoterm Langmuir lebih sesuai untuk adsorpsi H₂S dalam biogas menggunakan arang aktif dari buah mangrove (Wibowo *et al.*, 2020).

Penggunaan adsorben arang aktif dan zeolit dapat meningkatkan kandungan gas CH₄ sebesar 136,5% dan menurunkan kandungan gas CO₂ sebesar 64% pada biogas. Lama waktu pengujian mampu meningkatkan konsentrasi CH₄ dan menurunkan kandungan gas CO₂ dengan waktu paling optimal yaitu 30 menit (Masrukhi & Ritonga, 2019).

Penurunan kadar hidrogen sulfida (H₂S) terhadap panjang saringan dengan ukuran butir arang *mesh* 2,0 mm; 3,0 mm; dan 4,0 mm pada komposisi campuran 1:1. Kadar hidrogen sulfida (H₂S) menurun besar pengaruhnya dari ukuran butir arang yang digunakan serta panjang saringan. Semakin kecil butir arang dan semakin panjang saringan maka penurunan kadar hidrogen sulfida (H₂S) semakin besar. Penurunan kadar hidrogen sulfida (H₂S) terbesar berada pada *mesh* 2,0 mm pada saringan dengan panjang 120 cm yaitu sebesar 45 ppm. Penurunan kadar hidrogen sulfida (H₂S) terhadap panjang saringan dengan ukuran butir arang *mesh* 2,0 mm; 3,0 mm; dan 4,0 mm pada komposisi campuran 2:1. Kadar hidrogen sulfida (H₂S) menurun besar pengaruhnya dari ukuran butir arang yang digunakan serta panjang saringan. Semakin kecil butir arang dan semakin panjang saringan maka penurunan kadar hidrogen sulfida (H₂S) semakin besar. Penurunan kadar hidrogen sulfida (H₂S) terbesar berada pada *mesh* 2,0 mm pada saringan dengan panjang 120 cm yaitu sebesar 43 ppm (Pasae *et al*, 2019).

Pembuatan alat dilakukan dengam menggunakan material *stainless steel*. Beberapa rumus perhitungan desain diperoleh spesifikasi kolom adsorpsi yaitu tinggi adsorben 5,6 m, jari-jari kolom 0,039 m, tebal dinding kolom 3,01 mm dan gas yang akan di murnikan adalah gas hidrogen sulfida (H₂S) dalam biogas dengan kapasitas 100 liter per batch (Rambe *et al*, 2018).

Penghilangan atau pengurangan kadar hidrogen sulfida (H₂S) dalam biogas dengan metode adsorpsi menggunakan adsorben karbon aktif, dengan laju alir 0,5 L/detik, tinggi isian 64 cm, diameter kolom 1,85 cm jumlah kolom 3 buah diperoleh kesimpulan yaitu waktu jenuh paling lama terjadi pada adsorben dengan ukuran partikel 14 *mesh* yaitu setelah proses adsorpsi berjalan selama 90 menit, kemampuan adsorben karbon aktif yang paling baik dalam menyerap hidrogen sulfida (H₂S) adalah pada ukuran adsorben 14 *mesh* dengan kemampuan menjerap hidrogen sulfida (H₂S) sebanyak 368,65 mg setelah proses adsorpsi berlangsung selama 90 menit, dengan memasukkan data konstanta persamaan adsorpsi *isotherm Freundlich* ke

dalam rumus waktu tinggal adsorpsi, diperoleh waktu tinggal paling lama terjadi pada ukuran adsorben 12 mesh yaitu selama 127,9 detik (Alwathan *et al*, 2013).

Adsorpsi gas CO2 dipengaruhi oleh beberapa faktor yaitu : Jenis, ukuran partikel, ukuran pori dan jumlah zeolit serta bentuk dan ukuran kolom. Pada penelitian ini berat zeolit yang digunakan ada tiga : 100 gram, 200 gram dan 300 gram. Setelah dilakukan percobaan dapat disimpulkan bahwa pada berat zeolit 300 gram adalah yang terbaik untuk proses adsorpsi CO₂. Hasil analisa biogas menunjukkan bahwa zeolit zeochem 4A baik digunakan untuk menurunkan kadar CO₂ sebanyak 18,70 % sehingga kemurnian CH₄ meningkat sebanyak 30,4 % (Apriyanti, 2013).

Berikut ini tabel 2.1 mengenai ringkasan penelitian terdahulu, sebagai berikut:

Tabel 2. 1 Ringkasan Penelitian Terdahulu

No.	Peneliti	Tujuan	Hasil	Perbedaan
1.	Abdillah	Mengetahui	Pengurangan gas	Penggunaan variasi
	(2021)	efektifitas	zeolit sulfida (H ₂ S)	kolom adsorben portabel
		prototype filter	pada limbah	dengan variasi panjang 5
		zeolit sulfida	peternakan dapat	cm dan 10 cm, jenis
		(H_2S)	dilakukan dengan	karbon aktif berbeda,
		menggunakan	metode filtrasi dan	dan material dalam
		kombinasi wet	wet scrubber.	rancangan alat.
		scrubber dan		
		proses filtrasi.		
2.	Wibowo	Mengetahui	Efisiensi penjerapan	Penggunaan variasi
	(2020)	efektivitas	H ₂ S paling tinggi	kolom adsorben portabel
		pemurnian H ₂ S	diperoleh pada	dengan variasi panjang 5
		dalam biogas	penyerapan H ₂ S	cm dan 10 cm, jenis
		menggunakan	dalam biogas untuk	karbon aktif berbeda,
		arang aktif dari	ukuran arang aktif	dan ukuran mesh karbon

No.	Peneliti	Tujuan	Hasil	Perbedaan	
		buah mangrove,	-6 hingga +8 mesh	aktif, banyaknya massa	
		serta	dan tinggi tumpukan	karbon aktif.	
		menentukan	8 cm, diperoleh		
		konstanta	efisiensi penyerapan		
		isoterm adsorpsi	H ₂ S setelah 10 menit		
		Freundlich dan	mencapai 83,16%.		
		Langmuir	Konstanta		
			kesetimbangan arang		
			aktif teraktivasi KOH		
			0,5 M dengan metode		
			Langmuir sebesar		
			-239,981 dan metode		
			Freundlich sebesar		
			824,89.		
3.	Masrukhi	Melakukan	Penggunaan adsorben	Penggunaan jenis arang	
	(2019)	penelitian	arang aktif dan zeolit	aktif, material dalam	
		rancang bangun	dapat meningkatkan	perancangan alat, gas	
		alat pemurnian	kandungan gas CH ₄	yang akan dijerap.	
		biogas untuk	sebesar 136,5% dan		
		meningkatkan	menurunkan		
		kualitas biogas.	kandungan gas CO ₂		
			sebesar 64% pada		
			biogas. Waktu paling		
			optimal untuk		
			meningkatkan		
			konsentrasi CH4 dan		
			menurunkan		

No.	Peneliti	Tujuan	Hasil	Perbedaan		
			kandungan gas CO ₂			
			yaitu 30 menit.			
4.	Pasae	Menurunkan	Dari hasil pengujian	Penggunaan jenis		
	(2019)	kandungan gas	dan pengambilan data	limbah dan material		
		zeolite sulfida	dapat disimpulkan	dalam rancangan alat.		
		(H ₂ S) dalam	bahwa penurunan			
		kotoran sapi.	kadar zeolit sulfida			
			(H ₂ S) terbesar saat			
			menggunakan zeolit			
			saringan 120 cm			
			yaitu sebesar 43 ppm.			
5.	Rambe	Perolehan desain	Diperoleh spesifikasi	Penggunaan jenis		
	(2018)	dan rangkaian	kolom adsorpsi yaitu	limbah, material dalam		
		peralatan kolom	tinggi adsorben 5,6	rancangan alat, dan		
		adsorpsi untuk	m, jari-jari kolom	variasi kolom adsorben		
		pemurnian	0,039 m, tebal	yang digunakan.		
		biogas limbah	dinding kolom 3,01			
		cair pabrik	mm dan gas yang			
		kelapa sawit	akan di murnikan			
		untuk menyerap	adalah gas zeolit			
		gas zeolit sulfida	sulfida (H ₂ S) dalam			
		(H_2S) .	biogas dengan			
			kapasitas 100 liter per			
			batch.			
6.	Alwathan	Membuat alat	Penghilangan atau	Penggunaan jenis		
	(2013)	pemurnian gas	pengurangan kadar	limbah, jenis adsorben,		
		yang diperoleh	zeolit sulfida (H ₂ S)	dan variasi kolom		

No.	Peneliti	Tujuan	Hasil	Perbedaan	
	dari hasil		dalam biogas dengan	adsorben.	
	pengolahan		metode adsorpsi		
		limbah cair	menggunakan		
		rumah sakit dan	adsorben karbon		
		menganalisa gas	aktif, dengan laju alir		
		zeolit sulfida	0,5 L/min, tinggi		
		$(H_2S).$	isian 64 cm, diameter		
			kolom 1,85 cm		
			jumlah kolom 3 buah.		
7.	Apriyanti	Pemurnian	Pada penelitian ini	Penggunaan jenis	
	(2013)	biogas adsorpsi	berat zeolit yang	adsorben, berat	
		CO_2	digunakan adalah:	adsorben, gas yang akan	
		menggunakan	100 gr, 200 gr, dan	di jerap, waktu	
		zeolit.	300 gr. Berat zeolite	penjerapan.	
			300 gr ialah yang		
			terbaik untuk proses		
			adsorpsi CO _{2.}		

Setelah membandingkan dengan beberapa perancangan dan penelitian terdahulu yang sejenis dan telah dilakukan, maka letak kebaruan pada perancangan dan penelitian ini adalah berada pada pada variabel bebas yang digunakan yaitu variasi panjang kolom adsorben. Hal itu bertujuan untuk mengetahui pengaruh panjang kolom terhadap efektivitas penjerapan gas hidrogen sulfida (H₂S) dengan ukuran panjang masing-masing kolom adsorben yaitu 10 cm dan 5 cm.

2.2 Teori-Teori Yang Relevan

2.2.1 Pencemaran Udara

Udara merupakan komponen utama di lingkungan dan merupakan faktor yang sangat penting bagi kehidupan baik pada manusia, tumbuhan ataupun hewan (Tsukagoshi, 2015). Meningkatnya aktivitas manusia diberbagai bidang yaitu dari aktivitas industri, peternakan, pertanian, perikanan, maupun transportasi. Perubahan lingkungan udara pada umumnya disebabkan oleh pencemaran, yaitu masuknya zat pencemar yang berbentuk gas, partikel kecil atau aerosol ke dalam udara. Pencemaran udara merupakan peristiwa masuknya zat, energi, atau komponen lainnya ke dalam lingkungan udara. Pencemaran udara akan berakibat pada penurunan kualitas udara. Hal ini akan menyebabkan terganggunya kehidupan manusia dan makhluk hidup lainnya.

Pencemaran udara dapat terjadi karena adanya aktivitas manusia, salah satunya adalah aktivitas dalam pengolahan ikan yang menghasilkan berbagai macam jenis limbah, baik limbah cair (darah dan air bekas cucian hasil tangkapan laut) maupun limbah padat (kepala, jeroan (isi perut), sirip, sisik, dan kulit) yang akan sangat berpengaruh terhadap kualitas dan estetika pengolahan (keindahan) lingkungan sekitar. Kegiatan ikan selalu menghasilkan limbah padat karena umumnya yang dimanfaatkan hanya daging ikannya saja. Sementara untuk kepala, jeroan (isi perut), sirip, sisik, dan kulitnya jarang dimanfaatkan atau dibuang begitu saja. Bagian ikan yang dibuang inilah yang dimaksud dengan limbah padat ikan. Limbah yang dihasilkan dari kegiatan perikanan masih cukup tinggi, yaitu berkisar 20-30% (Pratama *et al*, 2015).

Pencemaran udara pada dasarnya berbentuk partikel (debu, aerosol, timah hitam) dan gas (CO, NOx, SOx, H₂S, hidrokarbon). Pencemaran udara karena adanya limbah padat perikanan yang belum terolah dengan baik itulah yang dapat menyebabkan adanya pencemaran udara berupa bau tidak sedap

atau busuk, karena limbah padat ikan memiliki kandungan gas hidrogen sulfida (H₂S) atau yang sering disebut dengan gas bau. Gas hidrogen sulfida (H₂S) diudara memiliki ambang batas sebesar 10 ppm. Dengan tercemarnya udara oleh gas hidrogen sulfida (H₂S) inilah dapat menyebabkan gangguan kesehatan yang berbeda tingkatan dan jenisnya, tergantung dari macam, ukuran dan komposisi kimiawinya (Ratnani, 2008).

Upaya pengendalian pencemaran lingkungan khususnya udara saat ini masih bersifat sectoral, baik legislatif maupun institusinya. Peraturan perundangan dalam kaitannya dengan upaya penanggulangan pencemaran yang bersifat nasional adalah Undang-Undang No.4 tahun 1982 tentang Ketentuan Pokok Pengelolaan Lingkungan Hidup.

2.2.2 Limbah Ikan

Menurut World Health Organization (WHO), limbah adalah sesuatu yang tidak berguna, tidak terpakai, tidak disenangi atau sesuatu yang dibuang yang berasal dari kegiatan manusia dan tidak terjadi dengan sendirinya (Humaira, 2020). Limbah adalah kotoran atau buangan yang merupakan komponen pencemaran yang terdiri dari zat atau bahan yang tidak mempunyai kegunaan lagi bagi masyarakat. Salah satu penghasil limbah ikan berasal dari perusahaan pengolahan ikan. Aktivitas pengolahan ikan semakin meningkat seiring dengan meningkatnya jumlah penduduk, konsumsi, pembangunan, dan ekonomi, sehingga berakibat pada semakin bertambahnya produksi limbah ikan.

Ikan merupakan salah satu makanan pokok jutaan orang di seluruh dunia dan konsumsi per kapitanya hampir dua kali lipat selama 45 tahun terakhir, sehingga menghasilkan sejumlah besar limbah ikan yang bersumber dari industri pengolahan ikan (Humaira, 2020). Menurut Organisasi Pangan dan Pertanian (FAO), produksi ikan dunia pada 2017 mencapai 172,6 juta ton, dimana sebagian besar produksi ini, yaitu sekitar 153,2 juta ton dimanfaatkan untuk konsumsi manusia.

Ikan tercatat sebagai bahan yang sangat cepat membusuk. Karenanya begitu ikan tertangkap, maka proses pengolahan dalam pengawetan (dengan es batu) dan pengolahan harus segera dilakukan. Selama pengolahan ikan, masih banyak bagian-bagian dari ikan seperti kepala, jeroan (isi perut), sirip, sisik, dan kulitnya tidak dimanfaatkan sama sekali dan dibuang begitu saja. Oleh karena itu begitu banyak timbunan limbah padat ikan yang belum dimanfaatkan menyebabkan bau yang tidak sedap karena adanya gas hidrogen sulfida (H₂S) yang dihasilkan dari limbah padat ikan tersebut. Limbah dapat menyebabkan kerusakan terhadap lingkungan yang cukup parah. Itulah sebabnya berbagai upaya dilakukan untuk meminimalisir efek dari limbah, berbagai peraturan ditegakkan untuk menanggulanginya.

2.2.3 Hidrogen Sulfida (H₂S)

 (H_2S) Hidrogen sulfida merupakan polutan beracun vang kandungannya banyak ditemukan dalam minyak bumi, pengolahan makanan, pengolahan limbah serta biogas (Islamiyah et al, 2014). Hidrogen sulfida (H₂S) merupakan gas yang berbau dan mematikan serta sangat korosif bagi berbagai jenis logam. Hidrogen sulfida terbentuk karena akibat adanya zat-zat organik oleh bakteri. Oleh karena itu, gas ini dapat ditemukan di lokasi pembuangan limbah suatu industri, peternakan, atau pada lokasi pembuangan sampah. Hidrogen sulfida (H₂S) juga diproduksi oleh pembusukan mikrobiologi dari senyawa sulfat dan reduksi mikroba dari sulfat (Widyaningsih, 2013). Hidrogen sulfida (H2S) mempunyai sifat dan karakteristik, antara lain:

- a. Tidak berwarna tetapi mempunyai bau khas seperti telur busuk pada konsentrasi rendah sehingga sering disebut sebagai gas telur busuk.
- b. Merupakan jenis gas yang beracun.
- c. Dapat terbakar dan meledak pada konsentrasi LEL (*Lower Explosive Limit*) 4,3% (43.000 ppm) sampai UEL (*Upper Explosive Limit*) 46%

(460.000 ppm) dengan nyala api berwarna biru pada temperature 500°F (260°C).

- d. Berat jenis gas hidrogen sulfida (H₂S) lebih berat dari udara sehingga gas hidrogen sulfida (H₂S) akan cenderung terkumpul di tempat atau daerah yang rendah. Berat jenis dari gas hidrogen sulfida (H₂S) 20% lebih berat dari udara, yaitu dengan perbandingan berat jenis H₂S: 1,2 atm dan berat jenis udara: 1 atm.
- e. H₂S dapat larut (bercampur) dengan air (daya larut dalam air 437 ml/100 ml air pada 0°C; 186 ml/100 ml air pada 40°C).
- f. H₂S bersifat korosif sehingga dapat mengakibatkan karat pada peralatan logam.

2.2.4 Sensor MQ-136

Sensor MQ-136 adalah suatu komponen semikonduktor yang berfungsi sebagai pengindera bau gas. Sensor MQ-136 cukup mudah dalam penggunaanya. Sensor ini sangat cocok digunakan untuk mendeteksi gas hidrogen sulfida (H₂S) dengan jangkauan deteksi mulai dari 1 sampai 100 ppm. Sensor ini memiliki sensitivitas yang tinggi dan waktu respon yang cepat terhadap deteksi gas hidrogen sulfida (H₂S). Menurut penelitian sebelumnya, sensor MQ-136 mampu mendeteksi gas hidrogen sulfida (H₂S) di ruang tertutup. Dalam perancangan alat penjerapan gas hidrogen sulfida (H₂S) ini menerapkan hal tersebut dengan menggunakan kotak yang terbuat dari bahan akrilik agar dapat mencegah dari kebocoran gas karena dapat mengganggu konsentrasi dalam kotak selama proses pengukuran dan pengujian (Kasenda *et al.*, 2019).

Gambar 2. 1 Sensor MQ-136

Sensor MQ-136 ini membutuhkan tegangan *input* sebesar 5V. Pada sensor ini terdapat nilai resistansi (Rs) yang apabila mengenai permukaan sensor, maka satuan resistansinya akan mengecil sesuai dengan konsentrasi gas, sebaliknya jika konsentrasi gas menurun akan diikuti dengan semakin tingginya resistansi maka tegangan keluarannya akan menurun. Pengaruh perubahan konsentrasi gas dapat mengubah nilai resistansi sensor dan juga akan mempengaruhi tegangan keluaranya, sehingga perbedaan inilah yang dijadikan acuan bagi pendeteksi gas hidrogen sulfida (H₂S). Sensor MQ-136 memerlukan rangkaian sederhana serta memerlukan tegangan pemanas (*power heater*) sebesar 5V, resistensi beban (*load resistance*) dan *output* sensor berupa data analog. Spesifikasi dari sensor MQ-136 antara lain sebagai berikut:

a. Target gas : Hidrogen sulfida (H₂S)

b. Model No. : MQ-136

c. Tipe sensor : Semiconductor

d. *Range* pendeteksi : 1-100 ppm

e. Pemanasan tegangan : 5V +/- 0,1 (DC/AC)

f. Tegangan rangkaian : 5V +/- 0,1 (DC/AC)

Sensor gas terdiri dari elemen sensor, dasar sensor dan tudung sensor. Elemen sensor terdiri dari bahan sensor dan bahan pemanas untuk memanaskan elemen. Elemen sensor menggunakan bahan-bahan seperti timah (IV) oksida SnO₂, wolfram (VI) oksida WO₃, dan lain-lain, tergantung pada gas yang hendak dideteksi (Wahyuni, 2017).

2.2.5 Adsorpsi

Adsorpsi adalah suatu proses yang berhubungan dengan permukaan dimana terjadi interaksi antara molekul-molekul suatu fluida (cairan maupun gas) dengan permukaan molekul padatan. Interaksi tersebut disebabkan oleh adanya gaya tarik atom atau molekul pada permukaan padatan membentuk suatu lapisan tipis yang menutupi permukaan padatan. Proses adsorpsi

dioperasikan berdasarkan kemampuan suatu padatan (adsorben) untuk mengkonsentrasikan adsorbat dari suatu campuran pada permukaannya. Proses adsopsi secara umum merupakan peristiwa perpindahan suatu zat dari fasa fluida ke fasa padatan. Fluida yang terlibat dalam proses adsorpsi dapat berupa gas ataupun cairan.

Peristiwa adsorpsi dapat terjadi pada adsorben yang pada umumnya berupa zat padat yang berasal dari bahan alam (Asnawati, 2017). Adsorpsi oleh zat padat dapat dibedakan menjadi dua, yaitu adsorpsi fisis (fisisorpsi) dan adsorpsi khemis (chemisorpsi). Adsorpsi fisik disebabkan oleh gaya *Van Der Waals*. Menurut *Van Der Waals*, adsorpsi fisik dan adsorpsi khemis keduanya terjadi karna adanya molekul-molekul teradsorpsi pada permukaan dengan ikatan yang lemah (Asip & Okta, 2013).

Menurut (Widayatno *et al.*, 2017) adapun faktor-faktor yang mempengaruhi daya adsorpsi, sebagai berikut:

1. Tekanan

Tekanan yang dimaksud adalah tekanan adsorben. Kenaikan tekanan adsorben dapat menaikkan jumlah yang di adsorpsi.

2. Laju Alir Gas

Laju alir suatu gas sangat mempengaruhi daya serap suatu adsorpsi karbon aktif. Laju alir gas yang besar sangat memudahkan molekul gas untuk memasuki pori-pori di permukaan. Hal ini membantu pemurnian gas hidrogen sulfida (H₂S) pada pori-pori sehingga adsorpsi akan semakin besar.

3. Temperatur Absolut

Temperatur yang dimaksud adalah temperatur adsorbat. Pada saat molekul-molekul gas atau adsorbat melekat pada permukaan adsorben, akan terjadi pembebasan sejumlah energi yang dinamakan peristiwa eksotermis. Temperatur yang turun akan menambah jumlah adsorbat yang teradsorpsi demikian juga untuk peristiwa sebaliknya.

4. Interaksi Potensial

Interaksi potensial antara adsorbat dengan dinding adsorben sangat bervariasi, tergantung dari sifat adsorbat-adsorben.

5. Jenis Adsorbat

a. Ukuran molekul adsorbat

Distribusi ukuran molekul adsorbat yang masuk dalam partikel adsorben akan dipengaruhi oleh distribusi ukuran pori.

b. Kepolaran zat

Adsorpsi lebih kuat terjadi pada molekul polar dibandingkan non polar. Molekul polar lebih teradsorpsi terlebih dahulu dibandingkan molekul non polar pada kondisi diameter yang sama.

2.2.6 Adsorben

Adsorben merupakan zat padat yang dapat menjerap komponen tertentu berasal dari suatu fase fluida. Adsorben terbuat dari bahan-bahan yang memiliki pori serta proses adsopsi dapat berlangsung pada dinding pori adsorben. Pori-pori adsorben memiliki ukuran yang sangat kecil mempunyai luas permukaan dalam menjadi beberapa orde besaran dibandingkan dengan permukaan luar dan itu bisa mencapai 2000 m/gram. Adsorben dapat dikelompokkan menjadi dua yaitu kelompok polar dan non polar. Jenis adsorben yang termasuk dalam adsorben polar (hydrophilic) adalah silika gel, alumina aktif, dan zeolit. Sedangkan jenis adsorben non polar (hydrophobic) adalah polimer adsorben dan karbon aktif yang salah satunya terbuat dari tempurung buah nipah (Nurmanita, 2019). Buah nipah mempunyai kandungan selulosa, hemiselulosa dan lignin yang lebih rendah jika dibandingkan dengan kayu karena kandungan yang cukup tinggi pada nipah yaitu kadar abu. Setiap bagian dari nipah mempunyai karakteristik khusus dan dapat dimanfaatkan untuk pengaplikasian yang sesuai berdasarkan keunggulannya. Sifat dasar dari selulosa, hemiselulosa dan lignin akan menambah nilai dari bagian nipah yang melimpah dan mudah didapat.

Luas permukaan spesifik, sangat mempengaruhi besarnya kapasitas penyerapan dari adsorben. Semakin luas permukaan spesifik dari adsorben, maka semakin besar pula kemampuan penyerapannya. Volume adsorben membatasi jumlah dan ukuran pori-pori pembentuk permukaan dalam (*internal surface*) yang menentukan besar atau kecilnya permukaan penyerapan spesifik (Saputra, 2008). Karakteristik adsorben yang dibutuhkan untuk adsorpsi:

- a) Luas permukaan dan volume pori adsorben. Luas permukaan berhubungan dengan struktur pori. Semakin kecil pori-pori arang aktif, mengakibatkan luas permukaan semakin besar dan semakin banyak adsorbat yang diserap, sehingga proses adsorpsi dapat semakin efektif. Kapasitas adsorpsi total dari suatu adsorbat tergantung pada luas permukaan total adsorbennya. Jumlah molekul adsorbat yang teradsorp meningkat dengan bertambahnya luas permukaan dan volume pori adsorben. Jadi semakin halus suatu adsorben, maka adsorpsinya semakin besar.
- b) Kemurnian adsorben
 - Sebagai zat untuk mengadsorpsi, maka adsorben yang lebih murni lebih diinginkan karena kemampuan adsorpsi lebih baik
- c) Memiliki aktifitas terhadap komponen yang diadsorpsi
- d) Memiliki daya tahan guncang yang baik
- e) Tidak ada perubahan volume yang berarti selama proses adsorpsi

2.2.7 Kebauan

Kebauan merupakan salah satu masalah gangguan pada lingkungan yang semakin besar dirasakan oleh masyarakat. Kasus masalah polusi bau semakin bertambah dari waktu ke waktu seiring dengan meningkatnya kegiatan industri (Kartika, 2017). Berbagai jenis industri telah dianggap oleh masyarakat sebagai sumber penghasil bau, termasuk industri perikanan. Senyawa kimia berbau tersebut kemudian terdispersi dalam udara yang berada di sekitar pemukiman warga. Pengetahuan masyarakat awam yang masih

terbatas tentang bau, senyawa berbau, sumber bau, polusi bau serta teknologi penanganan dan pengelolaan masalah bau menjadi salah satu sebab tetap berlangsungnya polusi bau.

Kebauan mempunyai dua pengertian, yang pertama berarti sebagai kesan dan kedua merujuk pada nama senyawa kimia. Bau dapat dikuantifikasi dalam beberapa cara yang salah satunya dengan skala hedonisme. Kuantifikasi bau bermanfaat untuk mengatasi polemik pencemaran bau yang banyak terjadi di Indonesia. Bau sebenarnya adalah senyawa kimia yang dalam kondisi normal berwujud gas, baik yang berasal dari uap cairan maupun hasil sublimasi padatan. Bau dapat berupa senyawa tunggal, seperti hidrogen sulfida (H₂S) (Yuwono, 2016).

Skala hedonisme merupakan penilaian kuantitatif yang datanya dinyatakan dalam berupa angka. Pengujian dilakukan dengan mengacu pada Kep-50/MENLH/11/1996 dan SNI 19-7119.1-2005 tentang emisi gas buang. Nilai skala hedonisme kebauan yang digunakan -4≤ x ≤4 dengan ketelitian 1 (satu) angka desimal. Faktor yang mempengaruhi polusi bau adalah aliran udara, lingkungan, tempat tertutup dan terbuka, lama waktu paparan, serta senyawa-senyawa, seperti hidrogen sulfida (H₂S), amonia (NH₃), metil mercaptan (CH₃SH), metil sulfida (CH₃)₂S, dan stirena (C₆H₅CHCH₂). Pada penilaian skala hedonisme memerlukan adanya narasumber yang akan mengisikan hasil penilaiannya pada sebuah kuisioner *form*. Berikut tabel 2.2 menunjukan penilaian skala hedonisme:

Tabel 2. 2 Skala Hedonisme Untuk Kebauan

Skala	Kesan Bau	Skala	Kesan Bau	Skala	Kesan Bau
- 4	Sangat bau	- 1	Bau	2	Cukup sedap
- 3	Agak bau	0	Tanpa bau	3	Sedap
- 2	Cukup bau	1	Sedang	4	Sangat sedap